当前位置:360文档网>专题范文 > 公文范文 > 2023年度《圆柱表面积》数学教案五篇

2023年度《圆柱表面积》数学教案五篇

发布时间: 2025-05-11 00:58:28 来源:网友投稿

《圆柱的表面积》数学教案1  圆柱的表面积  教学要求:  1、使学生理解和掌握圆柱体侧面积和表面积的计算方法,能正确计算圆柱的表面积,让学生认识取近似值的进一法。  2、进一步培养学生观察、分析和下面是小编为大家整理的2023年度《圆柱表面积》数学教案五篇,供大家参考。

2023年度《圆柱表面积》数学教案五篇

《圆柱的表面积》数学教案1

  圆柱的表面积

  教学要求:

  1、使学生理解和掌握圆柱体侧面积和表面积的计算方法,能正确计算圆柱的表面积,让学生认识取近似值的进一法。

  2、进一步培养学生观察、分析和推理等思维能力,发展学生的空间观念。

  3、培养学生的合作意识和主动探求知识的学习品质。

  教学重点:掌握圆柱表面积的计算方法。

  教学难点:能灵活运用相关知识解决实际问题。

  课前准备:

  1、教师准备一个圆柱体模型,表面的彩纸可揭开。

  2、准备一个自己上节课做的圆柱体。

  教学过程:

  教学步骤:

  教师活动过程

  学生活动过程

  一、复习引入

  1、口答下列问题,只列式不计算。

  2、导入新课.

  1、复习圆柱体的特征。

  1、求下列圆柱体的侧面积。

  (1)底面周长是18.84米、高是10米;

  (2)底面直径是2厘米、高是1厘米;

  (3)底面半径是0.5米、高是1.5米。

  2、教师出示圆柱体模型,如果我们在圆体表面贴上彩纸,边说边演示,怎样才能知道需要多少彩纸?根据学生回答,教师板书课题。

  1、学生回答

  2、学生讨论,然后汇报。

  二、教学新课

  1、 学习表面积的计算方法

  2、教学例2

  3、练习

  做出第6页第1题

  3、教学例3

  4、学习“进一法”

  1、学生拿出自己上节课做的圆柱体。

  2、思考:圆柱体的表面积包括哪几部分?

  3、根据学生的回答,教师依次把贴在圆柱体上的彩纸揭开,同时贴在黑板上。

  4、请学生说一说怎样计算圆柱体的表面积?

  圆柱体的表面积=侧面积+侧面积×2

  5、教师出示例2,提名板演,其余学生练习。

  6、指名两个板演,其余学生练习。

  7、教师提问:在日常生活中你看到的圆柱体是不是都包括两个底面和一个侧面?

  8、例3:一个没有盖的圆柱铁皮水桶,高是48厘米、底面直径是30厘米,做这个水桶至少要用铁皮多少*方厘米?(得数保留整百*方厘米数)

  着重让学生弄清“无盖”的含义,是求水桶的哪几个面的面积?

  9、教师着重说明为什么省略的十位上即使是4或比4小,也都要向前一位进1。

  1、学生细心观察自己做的圆柱体,然后讨论。

  2、学生交流汇报。

  2、 学生分组讨论,讨论后回答:①只有一个底面和一个侧面的;②两个底都没有,只有一个侧面。

  5、生讨论,然后独立完成。

  6、学生讨论。

  7、学生阅读书第5~6页有关内容。

  三、巩固练习

  1、完成书第6页做一做第2题。

  2、口答(只列式不计算)

  1、学生独立完成。

  2、压路机的前轮是圆柱体,长1.5米、底面周长3.14米,如果每分钟车轮滚20周,每分钟压过的路面是多少*方米?

  1、学生练习

  2、学生反馈

  四、课内总结

  五、课内作业

  1、课内作业:

  书第7页5~7题

  2、回家作业:

  书第7页第4题,第8题

《圆柱的表面积》数学教案2

  设计说明

  本节课的教学是在学生对圆柱的组成和特征已有初步认识,并且掌握了长方体、正方体表面积的计算方法的基础上进行的。根据学生的认知基础及培养学生的数学思维能力和空间想象能力,在教学设计上有以下特点:

  1.利用迁移、猜想,理解圆柱表面积的意义。

  新课伊始,通过复习长方体表面积的相关知识,使学生由长方体表面积的意义联想到圆柱表面积的意义,这样使学生对圆柱表面积有了初步的理解,为进一步探究圆柱表面积的求法作铺垫。

  2.利用演示、分析探究圆柱表面积的求法。

  直观演示可以使学生获得丰富的感性材料,加深对知识本质的理解,有利于培养学生的形象思维能力,因此,在教学中不但要鼓励学生大胆猜想,还要借助多媒体教学,帮助学生建立起圆柱各部分之间的联系,使学生轻松得出结论。

  3.联系实际,解决问题。

  在实际生活中,应用圆柱的表面积公式解决问题,有时只需要计算圆柱的侧面积,有时要计算圆柱的侧面积和一个底面的面积,因此,在教学中要引导学生学会把自己的知识经验及解决问题的策略不断地构建、重组、内化、升华,使感性认识与理性认识同时得到提升。

  课前准备

  教师准备PPT课件

  学生准备圆柱形实物

  教学过程

  ⊙复习导入

  1.铺垫。

  师:长方体的表面积指的是什么?(6个面的面积之和)

  师:怎样求长方体的表面积?

  预设

  生1:长方体的表面积=长×宽×2+长×高×2+宽×高×2。

  生2:长方体的表面积=(长×宽+长×高+宽×高)×2。

  2.迁移。

  (1)圆柱的表面积指的是什么?(三个面的面积之和)

  (2)怎样求圆柱的表面积?(生自由回答)

  3.导入。

  圆柱的表面积的求法与长方体的表面积的求法基本相同,都是求所有面的面积之和。这节课我们就来学习圆柱的表面积的相关知识。(板书:圆柱的表面积)

  设计意图:通过复习长方体的表面积的意义及求法,使学生建立起圆柱的表面积与长方体的表面积之间的联系,为进一步引导学生运用知识迁移的方法学习新知作铺垫。

  ⊙探究新知

  1.教学例3,探究计算圆柱表面积的方法。

  (1)理解圆柱表面积的意义。

  ①出示圆柱模型,观察思考:圆柱的表面积指的是什么?

  ②结合学生的回答,课件演示理解:圆柱的表面积指的是两个底面的面积加上一个侧面的面积。

  (2)探究圆柱表面积的求法。

  学生独立探究,然后汇报交流。

  ①圆柱的侧面积=底面周长×高。(强调长方形的长为圆柱的底面周长,宽为圆柱的高)

  用字母表示为s侧=ch。

  ②底面积=πr2。

  ③圆柱的表面积=圆柱的侧面积+两个底面的面积。用字母表示为s表=ch+2πr2。

  2.教学例4,解决求圆柱表面积的实际问题。

  课件出示例4。(利用圆柱表面积的计算方法解决实际问题)

  (1)学生读题,找一找这道题的所求问题。

  明确:求做这样一顶帽子至少要用多少*方厘米的面料,就是求圆柱的表面积。

  (2)想一想:怎样求这个圆柱的表面积呢?

  ①一顶帽子由几部分组成?

  (一个侧面+一个底面)

  ②明确解题思路及解法。

  先求帽子的侧面积:帽子的侧面积=πdh。

  再求帽顶的面积:帽顶的面积=πr2。

  最后求帽子的侧面积与帽顶的面积之和。

  师:解题时需要注意什么?

《圆柱的表面积》数学教案3

  教学目标

  1、使学生理解圆柱体侧面积和表面积的含义,掌握计算方法,并能正确计算圆柱体侧面积和表面积。

  2、使学生在数学学习活动中获得成功的体验,建立自信心。

  教学重点

  表面积的计算。

  教学难点

  侧面积的含义与计算方法。

  教学关键利用教具,弄清侧面积与圆的关系。

  教具准备圆柱侧面展开教具。

  教学方法操作法。

  教学过程

  旧知铺垫

  1、口算。

  3.1434100.5670.820

  2、长方体表面积。12㎝

  (1)长方体的表面积指的是什么?8㎝

  (2)怎样计算长方体的表面积?20㎝

  探索新知

  1、揭示并板书课题。

  2、教学例3。

  (1)你们知道圆柱体的表面积指的是什么吗?

  (说一说、摸一摸)

  (2)你们想应该怎样计算圆柱体的表面积?

  (学生说明、教师演示)

  板书结论:圆柱体的表面积=圆柱体的侧面积+2个底面的面积

  (3)圆柱体的底面积和侧面积会计算吗?

  (学生说明、教师演示)

  板书推导过程。

  3、尝试练习。

  (1)求侧面积。

  a、C=2.5dm,h=0.6dm。

  b、d=8cm,h=12cm。

  (2)求表面积。

  a、S底=40c㎡,S侧=25c㎡。

  b、r=2dm,h=5dm。

  4、课堂小结。

  巩固练习完成练习2的第5、6题。

  布置作业完成练习2的第7、8题。

《圆柱的表面积》数学教案4

  教学目标

  1.认识掌握圆柱各部分名称,建立圆柱体空间概念;

  2.掌握圆柱体侧面积、表面积的计算方法,并能具体应用。

  教学重点和难点

  1.教学重点:推导圆柱体侧面积的计算方法。

  2.教学难点:圆柱体侧面积公式的推导过程。

  教学过程设计

  (一)复习准备

  师:我们已经学习了不少几何图形。现在看老师手里拿的是什么图形?

  生:长方形。

  师把长方形贴在黑板上。

  师:面积如何求?

  生:长方形面积=长×宽。(师板书)

  师又拿出正方形,问相同的问题,然后把这个正方形贴在长方形旁边。再拿出圆形。

  师:圆的面积和周长公式是什么?给什么条件能求出圆的面积和周长?

  然后把圆形贴在长方形上面。再出一些练习题进行圆面积和周长的计算。强调计量单位。

  师又拿出长方体、正方体。当拿出圆柱体时,同学们都能回答是圆柱体。接着让他们举一些日常生活中经常见到的圆柱形物体。再让他们拿出自己事先准备的圆柱体(如果提出似是而非的问题时,先不要进行讨论。)这时老师也拿出一些实物:手电筒里的"反光罩、罐头盒、小鼓、印章、烟囱的半个拐脖,问这些实物叫不叫圆柱体?为什么不叫圆柱体?

  师:今天我们就来学习一种新的形体——圆柱体。(板书课题——圆柱)

  (二)学习新课

  1.圆柱体的认识。

  师:现在找一个同学到前面摸一摸圆柱体有哪几个面。(指名上前摸。)

  生:上、下两个面和周围一个面。

  师:上、下两个面是什么形状?它们的面积大小怎样?

  生:上、下两个面是圆形,面积相等。

  师:我们把圆柱上、下两个面叫做底面。(板书:底面)

  师:周围的这个面是个曲面。我们把周围的这个面叫做侧面。(板书:侧面)

  师:我们把一个圆在*面上滚动一周,痕迹是一条线段。如果把这个圆柱在*面上滚动一周,它的侧面留下的痕迹将是一个什么形状?同学们可以自己用手中的学具动手滚一下,能体会出是一个什么形状?

  生:是一个长方形。

  师演示:将圆柱体侧面展开得到一个长方形。(与黑板贴的长方形一样大。)

  师接着拿出两个高矮不一样的圆柱体。

  师问:为什么有高有矮呢?由什么决定的?

  生:由高决定的。

  师:什么是圆柱的高呢?(板书:高。写在长方形宽处。)看看书上是怎么讲的。(看书第50页,找同学回答。)老师在圆柱侧面上画一条垂直于底面的线段,这条线段就是这个圆柱的高。

  师出示投影,让学生指出高。

  师:圆柱的高有多少条?

  生:无数条。

  师:高都相等吗?

  生:都相等。

  师:现在我们来回答刚才举的一些物体不是圆柱体的原因。(先让同学们说自己手中的,最好让本人说,然后再说老师手中的实物。)

  师:我们讲的圆柱体都是直圆柱。

  2.圆柱的侧面积。

  (1)推导公式。

  师:圆柱侧面图是一个长方形。下面同学们四人一组对照手中的圆柱体学具进行讨论。

  讨论题目是:

  a:这个长方形与圆柱体有哪些关系?

  b:你能推导出圆柱体侧面积计算方法吗?

  然后学生汇报讨论结果。

  生:这个长方形的长等于圆柱体的底面周长,宽等于圆柱的高,长方形面积等于圆柱的侧面积。从而得出;圆柱体侧面积=底面周长×高。用字母公式表示为:S侧=Ch。

  老师板书公式。

  (2)利用公式计算。

  例1一个圆柱,底面的直径是0.5米,高是1.8米,求它的侧面积。(得数保留两位小数)

  老师在黑板上板演。

  下面同学们进行练习。投影练习题:

  ①一圆柱底面半径是5厘米,高5厘米,求侧面积。

  ②一圆柱底面半径是2分米,高是直径的2倍,求它的侧面积。

  ③一圆柱底面周长是12厘米,高12厘米,求它的侧面积。

  师:你能知道第③题圆柱侧面展开图是什么图形吗?

  3.圆柱的表面积。

  师在课题“圆柱”后面接着写“的表面积”。

  (1)推导公式。

  师:同学们已经学会求圆柱的侧面积。如果求这个圆柱的表面积,你会求吗?(老师同时演示圆柱体*面展开图,让同学们进行讨论。)

  生汇报讨论结果,老师板书公式:

  S表=S侧+2S圆

  (2)利用公式计算。

  (投影出示)

  例2计算圆柱体的表面积(见下图)。(单位:厘米)

  同学说思路,老师板书,注意每一步结果写计量单位。

  解①侧面积:2×3.14×5×15=471(*方厘米)

  ②底面积:3.14×52=78.5(*方厘米)

  ③表面积:471+78.5×2=628(*方厘米)

  答:它的表面积是628*方厘米。

  例3一个没有盖的圆柱形铁皮水桶,高是24厘米,底面直径是20厘米。做这个水桶要用铁皮多少*方厘米?(得数保留整百*方厘米。)

  同学说思路,列式。老师把正确的解答用投影打出来。

  (1)水桶的侧面积

  3.14×20×24=1507.2(*方厘米)

  (2)水桶的底面积

  3.14×(20÷2)2

  =3.14×102

  =3.14×100

  =314(*方厘米)

  (3)需要铁皮

  1507.2+314=1821.2≈1900(*方厘米)

  答:做这个水桶要用铁皮1900*方厘米。

  小结:今天我们学习了哪些知识?(指名回答)下面我们来检查一下,这节课谁学习得最好?

  (三)巩固反馈

  (1)看书第54页第1题。

  (2)投影,指出下面圆柱体的高是几?

  (3)有一节直径10厘米的烟囱,长3米。这节烟囱用铁皮多少*方米?(只列式)

  (4)一种轧道机,后轮直径1.32米,长1.27米。如果后轮每分钟转动6周,每分钟可轧路面多少*方米?(只列式)

  (5)做一对无盖水桶,要求底面半径15厘米,高4分米。至少需用铁皮多少*方分米?(结果保留一位小数。)

  (6)一种圆柱形小油漆桶,底面周长50.24厘米,高20厘米。每个桶用铁皮多少*方分米?(四人讨论后口头回答。)

  学生做,老师巡视,找几个同学把题写在玻璃片上,然后全体订正。

  思考题:

  (1)你要做一个圆柱体,先确定什么条件?你是怎样做的?

  (2)我们在学习圆面积时,用两个完全一样的圆拼成一个近似长方形的方法推导出圆面积的公式,你能用这种方法推导出求圆柱体的表面积的另外一种计算方法吗?并用此方法做第(6)题,比较哪种方法简便?

  提示:

  课堂教学设计说明

  本节课的教学设计分三个层次。

  第一层次,使学生认识圆柱体底面、侧面和高。通过让学生观察实物和教具,以及插图和自己举日常生活中的实例,并让学生亲自动手摸一摸、看一看,使学生能准确地掌握圆柱体的特征。

  第二层次,推导圆柱体的侧面积计算公式和表面积计算方法。

  首先让学生讨论圆柱侧面展开的这个长方形与圆柱之间的关系。老师用圆柱体在黑板上贴有长方形处滚动一周,使学生了解到这个长方形的长就是底面周长,长方形的宽就是这个圆柱的高,从而用已学过的长方形面积公式很自然地推导出求圆柱体的侧面积公式。在这个基础上再加上两个圆面积,引导学生理解圆柱表面积的意义,从而总结出求圆柱的表面积的计算方法。使学生认识到立体转*面、形变量不变的辩证关系,培养同学们的观察分析能力。

  第三层次是针对本节课所学知识设计的一些联系实际的应用题。安排有:只有侧面的圆柱形;只有一个底面的圆柱形;两个底面都有的圆柱形。同时计量单位有所不同。这样培养学生认真审题的好习惯,提高学生灵活应用能力,有利于发展学生的空间概念。

《圆柱的表面积》数学教案5

  设计说明

  本节课的教学是在学生对圆柱的组成和特征已有初步认识,并且掌握了长方体、正方体表面积的计算方法的基础上进行的。根据学生的认知基础及培养学生的数学思维能力和空间想象能力,在教学设计上有以下特点:

  1.利用迁移、猜想,理解圆柱表面积的意义。

  新课伊始,通过复习长方体表面积的相关知识,使学生由长方体表面积的意义联想到圆柱表面积的意义,这样使学生对圆柱表面积有了初步的理解,为进一步探究圆柱表面积的求法作铺垫。

  2.利用演示、分析探究圆柱表面积的求法。

  直观演示可以使学生获得丰富的感性材料,加深对知识本质的理解,有利于培养学生的形象思维能力,因此,在教学中不但要鼓励学生大胆猜想,还要借助多媒体教学,帮助学生建立起圆柱各部分之间的联系,使学生轻松得出结论。

  3.联系实际,解决问题。

  在实际生活中,应用圆柱的表面积公式解决问题,有时只需要计算圆柱的侧面积,有时要计算圆柱的侧面积和一个底面的面积,因此,在教学中要引导学生学会把自己的知识经验及解决问题的策略不断地构建、重组、内化、升华,使感性认识与理性认识同时得到提升。

  课前准备

  教师准备 PPT课件

  学生准备 圆柱形实物

  教学过程

  ⊙复习导入

  1.铺垫。

  师:长方体的表面积指的是什么?(6个面的面积之和)

  师:怎样求长方体的表面积?

  预设

  生1:长方体的表面积=长×宽×2+长×高×2+宽×高×2。

  生2:长方体的表面积=(长×宽+长×高+宽×高)×2。

  2.迁移。

  (1)圆柱的表面积指的是什么?(三个面的面积之和)

  (2)怎样求圆柱的表面积?(生自由回答)

  3.导入。

  圆柱的表面积的求法与长方体的表面积的求法基本相同,都是求所有面的面积之和。这节课我们就来学习圆柱的表面积的相关知识。(板书:圆柱的表面积)

  设计意图:通过复习长方体的表面积的意义及求法,使学生建立起圆柱的表面积与长方体的表面积之间的联系,为进一步引导学生运用知识迁移的方法学习新知作铺垫。

  ⊙探究新知

  1.教学例3,探究计算圆柱表面积的方法。

  (1)理解圆柱表面积的意义。

  ①出示圆柱模型,观察思考:圆柱的表面积指的是什么?

  ②结合学生的回答,课件演示理解:圆柱的表面积指的是两个底面的面积加上一个侧面的面积。

  (2)探究圆柱表面积的求法。

  学生独立探究,然后汇报交流。

  ①圆柱的侧面积=底面周长×高。(强调长方形的长为圆柱的底面周长,宽为圆柱的"高)

  用字母表示为s侧=ch。

  ②底面积=πr2。

  ③圆柱的表面积=圆柱的侧面积+两个底面的面积。用字母表示为s表=ch+2πr2。

  2.教学例4,解决求圆柱表面积的实际问题。

  课件出示例4。(利用圆柱表面积的计算方法解决实际问题)

  (1)学生读题,找一找这道题的所求问题。

  明确:求做这样一顶帽子至少要用多少*方厘米的面料,就是求圆柱的表面积。

  (2)想一想:怎样求这个圆柱的表面积呢?

  ①一顶帽子由几部分组成?

  (一个侧面+一个底面)

  ②明确解题思路及解法。

  先求帽子的侧面积:帽子的侧面积=πdh。

  再求帽顶的面积:帽顶的面积=πr2。

  最后求帽子的侧面积与帽顶的面积之和。

  师:解题时需要注意什么?

推荐访问:表面积 圆柱 数学教案 《圆柱表面积》数学教案五篇 《圆柱的表面积》数学教案1 小学数学《圆柱的表面积》教案

版权所有:360文档网 2013-2025 未经授权禁止复制或建立镜像[360文档网]所有资源完全免费共享

Powered by 360文档网 © All Rights Reserved.。备案号:京ICP备13037083号-1