小班主题三角形教案1 设计意图 认识三角形是幼儿几何形体教育的内容之一,幼儿的几何形体教育是幼儿数学教育的重点内容。学习一些几何形体的简单知识能帮助他们对客观世界中形形色色的物体做出辨别和区分。下面是小编为大家整理的2023年度小班主题三角形教案3篇,供大家参考。
小班主题三角形教案1
设计意图
认识三角形是幼儿几何形体教育的内容之一,幼儿的几何形体教育是幼儿数学教育的重点内容。学习一些几何形体的简单知识能帮助他们对客观世界中形形色色的物体做出辨别和区分。发展它们的空间知觉能力和初步的空间想象力从而为小学学习几何形体做些准备。根据小班幼儿的思维特点和活泼好动的性格,我将三角形的.图形特征编成简短的故事,再结合图形拼摆,让孩子在玩中学、学中乐、乐中做。使幼儿养成动手、动口、动脑的好习惯,培养幼儿的创新意识。
活动目标
1、知道三角形的主要特征,即三角形由三条边,三个角组成。
2、能找出生活中和三角形相似的物体。
3、乐意动手操作,提高观察力和空间想象力。
4、引发幼儿学习图形的兴趣。
5、激发幼儿学习兴趣,体验数学活动的快乐
活动准备
1、小白兔、萝卜、蘑菇图片各一个,
2、图形组成的实物图片4张。
3、孩子人手3个三角形。
活动过程
一、故事:小白兔过生日今天是小白兔的生日,早晨小白兔高高兴兴的从家里出来,它要去采蘑菇,走着走着它看到一个大萝卜,小白兔捡起大萝卜继续往前走,走到蘑菇地里采了一个大蘑菇高兴的回家了。
二、观察小白兔的出行路线请一个小朋友将路线用线连接起来,观察像什么图形。
三、引导幼儿观察比较图形,幼儿每人一个三角形。
1、通过自己数一数,试一试,感知图形特征,并充分让幼儿表述,得出图形的特征。
2、老师小结三角形特征,使幼儿获得的知识完整化。
四、复习巩固三角形的特征1、给图形宝宝找朋友,让幼儿从众多几何图形卡片中找出三角形。
并一一出示三角形,并说出为什么?
2、观察图形拼图,找出三角形,数一数用了几个三角形?
3、请幼儿在周围环境中找出象三角形的东西。
延伸活动
活动反思:
小班幼儿的思维是具体形象思维,用故事引出开头吸引孩的注意,在拼拼摆摆的过程中加深孩子对三角形的认识,老师及时的小结使孩子获得知识的完整性。由于生活中属于三角形的物体少一些,所以孩子丰富的不是很多。
小班主题三角形教案2
活动设计背景
不同形状的三角形,使得幼儿很感兴趣。通过动手操,将3根一样长或不一样长的小棍,拼做三角形,使幼儿进一步认识到了有三个角,三条边的就是三角形
活动目标
1、认识三角形,知道三角开有三条边,三个角,复习手口一致点数到了,培养幼儿的观察和比较能力。
2、引发幼儿学习图形的兴趣。
3、培养幼儿比较和判断的能力。
4、发展幼儿逻辑思维能力。
5、引导幼儿积极与材料互动,体验数学活动的乐趣。
教学重点、难点
1、认识三角形,并知道三角形有许多形状
2、区分三角形与正方形
活动准备
教具:三角形的彩纸或吹塑纸,等边三角形,等腰三角形,直角三角形,锐角三角形,钝角三角形各1张。够每个幼儿做1-2个三角形的小棍(长短不同),正方形彩纸一张
活动过程
1、三角形是什么样子的?老师出示一个等腰三角形,告诉幼儿这是一个三角形,。请幼儿数一数三角形有几条边?几个角?
教师小结:这是一个三角形,三角形有三条边,三个角,凡是有三条边,三个角的图形,我们都把它叫做三角形。
2、复习对三角形的认识。教师出示一个直角三角形,请幼儿想一想这是什么形状?为什么?
3、和正方形比一比,看有什么不同。教师一个正文形请幼儿说出名称,并找出正方形和三角形有哪些不同的地方?
教师小结:
正方形有四条边,三角形有三条边,正方形的四条边一样长,三角形的三条边不一样长;正方形有四个角,三角形有三个角;正方形的四个角一样大,三角形的三个角可以不一样大。(教师边说边演示)
4、它们都是三角形吗?教师出示各种三角形,请幼儿说说它们是不是三角形,为什么?(幼儿只要答出“是三角形,因为它们都有三条边,三个角”就可以了。
教师小结:
①、三角形有三条边,三个角
②、三角形有许多兄弟,它们虽然长得不一样,可是它们都有三条边,三个角
③、三角形的三条边可以不一样长,三个角可以不一样大
④、只要一个图形有三条边,三个角,它们就是三角形
5、让幼儿寻找常见实物中有什么东西像三角形
6、幼儿操作。将许多长短不同的小棍放在幼儿数3根小棍做三角形(可以找一样长的小棍也可以找不一样长的;做得快的可以做第二个,第三个)。
教学反思
我上这节数学课,就是让孩子们认识三角形,难点就是让幼儿如何区分三角形和正方形。在这教学过程中,我将许多长短不同的小棍放在孩子们的桌上,让孩子们数3根小棍拼做三角形(可以找一样长的小棍,也可以找不一样长的)。通过让他们动手操作,让孩子们进一步认识到了1、三角形有三个角、三条边2、三角形的三条边可以不一样长,三个角可以不一样大。
小班主题三角形教案3
活动设计背景
小班的幼儿略微有了粗浅的几何概念,这一阶段的幼儿通过老师引导能正确的认识圆形,三角形和正方形。但他们不是从这些形状的特征来认识而是将其和日常生活中熟悉的物体相对照。因此,我让幼儿在游戏中探索中对图形产生兴趣,并通过观察,比较,想象动手等形式感知图形的不同特征。
活动目标
1、通过对比让幼儿感知图形的基本特征,创设愉悦的游戏情节。
2、运用多种感官来调动幼儿的思维想象能力的观察力,激发幼儿的探索能力。
3、引导幼儿积极与材料互动,体验数学活动的乐趣。
4、引发幼儿学习图形的兴趣。
5、发展幼儿逻辑思维能力。
教学重点、难点
圆形三角形和方形的认识和区别
活动准备
小动物的图片,几何图形组成的图画和三种几何图形卡片若干。
活动过程
一.1小朋友老师今天带你们拼拼图,你们愿不愿意图?随后,我会出示用这三种图片组成的各种图片展示给幼儿,激发幼儿的兴趣。我会和幼儿一起继续通过想象摆出各种图形。
2提问:这么多好看的图形你们知道它们使用什么图形组成的吗?
3幼儿回答完我会根据小朋友的回答用儿歌的形式把三种图形的特点和名称说给小朋友们听。
二.用游戏的形式让幼儿认识三种图形。
1游戏:摸一摸。用摸得形式让小朋友体会这三种图形的不同之处,并说出图形的名称。
2游戏:谁的本领大。出示由图形拼成的各种图案让小朋友找出是由什么图形组成的。
3游戏:小动物找家。出示小动物图片,我会告诉小朋友它们哭了,原因是找不到自己的家了,请小朋友帮帮它找找它们的家。例如;我会扮演小动物说说自己的房子是什么形状的,请小朋友来帮忙。
4游戏:找图形宝宝。在教室地板上摆放三个图形宝宝,我喊口令小朋友找图形站好看谁找的快又好。
三.结束。今天我们玩得很开心,小朋友们能告诉老师你们都认识了什么图形,它们都有什么特点?你们回家观察一下,你家里什么东西是由我们今天认识的图形组成的,明天来了告诉老师。
四.放排排队的歌,带小朋友去卫生间。
教学反思
当我进行实际教学过程时,我从孩子们身上看到了这样的现象:1.幼儿对各种图形非常感兴趣,幼儿对身边的事物有着敏锐的观察力,有渴望了解图形宝宝的欲望2.在活动中,幼儿的情绪很活跃,能把自己发现的主动地告诉老师和周边的小伙伴,使幼儿的表达能力、反应能力和观察能力都得到了发展。我还从孩子们的操作中,1.在这次活动中孩子乐于参与,积极发现。2.孩子们兴致浓厚,也愿意主动去探索,主动去参与。我觉得我原来的设计可以这样的调整:幼儿自我操作时间不足,没有创设幼儿合作交流的机会,语言还要精炼等,在以后组织活动的过程中我应加以改进,为幼儿传递良好的语感,培养幼儿善于表达的能力。
小班主题三角形教案3篇扩展阅读
小班主题三角形教案3篇(扩展1)
——认识三角形小班教案3篇
认识三角形小班教案1
活动目标
认识三角形,知道三角开有三条边,三个角,复习手口一致点数到了。
培养幼儿的观察和比较能力。
引导幼儿积极与材料互动,体验数学活动的乐趣。
乐意参与活动,体验成功后的乐趣。
教学重点、难点
1、认识三角形,并知道三角形有许多形状
2、区分三角形与正方形
活动准备
教具:三角形的彩纸或吹塑纸,等边三角形,等腰三角形,直角三角形,锐角三角形,钝角三角形各1张。够每个幼儿做1-2个三角形的小棍(长短不同),正方形彩纸一张
活动过程
1、三角形是什么样子的?老师出示一个等腰三角形,告诉幼儿这是一个三角形,。请幼儿数一数三角形有几条边?几个角?
教师小结:这是一个三角形,三角形有三条边,三个角,凡是有三条边,三个角的图形,我们都把它叫做三角形。
2、复习对三角形的认识。教师出示一个直角三角形,请幼儿想一想这是什么形状?为什么?
3、和正方形比一比,看有什么不同。教师一个正文形请幼儿说出名称,并找出正方形和三角形有哪些不同的地方?
教师小结:
正方形有四条边,三角形有三条边,正方形的四条边一样长,三角形的三条边不一样长;正方形有四个角,三角形有三个角;正方形的四个角一样大,三角形的三个角可以不一样大。(教师边说边演示)
4、它们都是三角形吗?教师出示各种三角形,请幼儿说说它们是不是三角形,为什么?(幼儿只要答出“是三角形,因为它们都有三条边,三个角”就可以了。
教师小结:
①、三角形有三条边,三个角
②、三角形有许多兄弟,它们虽然长得不一样,可是它们都有三条边,三个角
③、三角形的三条边可以不一样长,三个角可以不一样大
④、只要一个图形有三条边,三个角,它们就是三角形
5、让幼儿寻找常见实物中有什么东西像三角形
6、幼儿操作。将许多长短不同的小棍放在幼儿数3根小棍做三角形(可以找一样长的小棍也可以找不一样长的;做得快的可以做第二个,第三个)。
教学反思
我上这节数学课,就是让孩子们认识三角形,难点就是让幼儿如何区分三角形和正方形。在这教学过程中,我将许多长短不同的小棍放在孩子们的桌上,让孩子们数3根小棍拼做三角形(可以找一样长的小棍,也可以找不一样长的)。通过让他们动手操作,让孩子们进一步认识到了1、三角形有三个角、三条边2、三角形的三条边可以不一样长,三个角可以不一样大。
认识三角形小班教案2
活动目标:
1、培养幼儿对图形的兴趣和数学活动常规。
2、初步发展幼儿的观察力、分析能力和概括能力。
3、感知并说出三角形的基本特征,能找出和三角形相似的物体。
活动准备:多媒体、课件各一,图形若干。
活动分析:观察、对比是孩子们探究的过程,通过图形的对比引导幼儿感知三角形的基本特征,作为本次活动的重点。活动中运用课件直观、形象的特点,通过多种游戏形式,采用启发法、提示法,引导幼儿进一步掌握并概括三角形的基本特征,从而突破难点部分。活动的结束之际,组织幼儿进一步从生活环境中找出像三角形的物体,作为活动的延伸环节,自然结束。
活动过程:
一、导入。采用观察法,通过课件中图形宝宝的口吻引出三角形。
二、展开。
1、采用游戏法引导幼儿在众图形中寻找三角形。
2、引导幼儿观察三种三角形的共同特征,发现三角形有三条边、三个角。
3、动手操作。
a、幼儿从图形筐中找出三角形,分别数出边、角的数量,进一步掌握三角形特征。
b、观察并说出三角形像什么。
4、游戏“猜猜我是谁”。组织幼儿根据图形渐渐露出部分猜测出图形,进一步巩固幼儿对图形特征的认识。
5、游戏“捉迷藏”
幼儿从简单的画面中找出三角形。
6、引导幼儿观察并找出活动室中那些物品像三角形。
三、延伸。
请幼儿到生活环境中进一步寻找三角形的踪迹。
认识三角形小班教案3
活动目标
1。认识三角形的特征,知道三角形由3条边,三个角。
2。能将三角形和生活中常见实物进行比较,找出和三角形相似的物体。
3。发展幼儿观察力,空间想象力。
活动准备
1。PPT一份,大三角板一个,长短不同的小棒,雪糕棒等
活动过程
一。导入:手指游戏:快乐的小鱼二。学习三角形特征
1、认识三角形
(1)出示魔法线昨天张老师得到了一根魔法线,我今天把他带来了,让我们一起把它叫出来。123,请出来。
(PPT出现一根红色的魔法线)提问:它是什么颜色的?
(2)第一次变化这跟魔法线他会变,让我们一起喊123,看他会变成什么?(孩子们一起喊123,PPT出现三根红线)提问:数一数变成了几根线,
(3)第二次变化(孩子们一起喊123,PPT出现一个的三角形)又变成了什么?(三角形)
(4)触摸三角形老师这里也有一个大的三角形,我请小朋友们来摸一摸,他是不是有三条边,三个角。
(5)又一次变化一个三角形又变出了好多的三角形,虽然它们的大小不同,但他们都是三角形。
2、巩固三角形特征
(1)引导幼儿观察图形,发现三角形的特征。
前几天张老师去旅游。到了一个神奇的国家,三角形王国,他们这里的东西都是三角形的,老师把他拍了下来今天和你们一起来分享(继续看PPT,出示各种各样的三角形物品)A钟表店B食品店C帽子店
(2)再来找一找王国里还有哪些东西是三角形的(许多小旗子,屋顶,冰淇淋,标志牌等)
(3)引导幼儿在活动室里找一找三角形的物品
3、老师三角形特征,使幼儿获得的知识完整化。(出示最后一张PPT)今天你们表现真棒,找到了这么多三角形的物品,他们虽然长得不一样,(不同形状,不同大小)但都有三条边,三个角;有三条边,三个角的图形都是三角形。
三。复习三角形的特征冰糕棒、小木棒供幼儿拼三角形,巩固认识其三角形。
活动反思
小班幼儿的思维是具体形象思维,用变魔术的形式引出开头吸引孩的注意,通过变一边、摸一摸、看一看、找一找、摆一摆等,做了三角形等一系列活动,使每位幼儿在广阔的活动和认识空间在拼拼摆摆的过程中加深对三角形的认识,老师及时的使孩子获得知识的完整性。虽然生活中属于三角形的物体少一些,但孩子们能积极参与并观察,找到了好多的环境中的三角形。
小班主题三角形教案3篇(扩展2)
——全等三角形教案
全等三角形教案
作为一名专为他人授业解惑的人民教师,常常需要准备教案,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。优秀的教案都具备一些什么特点呢?以下是小编精心整理的全等三角形教案,欢迎大家分享。
全等三角形教案1
〖教学目标〗
◆1、探索两个直角三角形全等的条件.
◆2、掌握两个直角三角形全等的条件(hl).
◆3、了解角*分线的性质:角的内部,到角两边距离相等的点,在角*分线上,及其简单应用.
〖教学重点与难点〗
◆教学重点:直角三角形全等的判定的方法“hl”.
◆教学难点:直角三角形判定方法的说理过程.
〖教学过程〗
一、 创设情境,引入新课:
教师演示一等腰三角形,沿底边上高裁剪,让同学们观察两个三角形是否全等?
二、 合作学习:
(1) 回顾:判定两个直角三角形全等已经有哪些方法?
(2) 有斜边和一条直角边对应相等的两个三角形全等吗?如何会全等,教师可启发引导学生一起利用画图,叠合方法探索说明两个直角三角形全等的判定方法,可充分让学生想象。不限定方法。
教师归纳出方法后,要学生注意两点:<1>“hl”是仅适用于rt△的特殊方法。
(3) 教师引导、学生练习 p47
三、 应用新知,巩固概念
例题讲评
例:已知:p是∠aob内一点,pd⊥oa,pe ⊥ob,d,e分别是垂足,且pd=pe,则点p在∠aob的*分线上,请说明理由。
分析:引导猜想可能存在的rt△;构造两个全等的rt△;要说明p在∠aob的*分线上,只要说明∠dop=∠eop
小结:角*分线的又一个性质:(判定一个点是否在一个角的*分线上的方法)
角的内部,到角的两边距离相等的点,在这个角的*分线上。
四、学生练习,巩固提高
练一练:p48 1. 2. p49 3
五、小结回顾,反思提高
(1)本节内容学的是什么?你认为学习本节内容应注意些什么?
(2)学习本节内容你有哪些体会?
(3)你认为有没有其他的方法可以证明直角三角形全等(勾股定理)
(4)你现在知道的有关角*分线的知识有哪些?
六、布置作业
全等三角形教案2
课程内容
边边边判定定理
选用教材
人教版数学八年级上册
授课人
崔志伟
授课章节
第十二章第二节
学 时
1
教学重点
掌握全等三角形的判定定理边边边,能运用该定理解决实际问题。
教学难点
探索三角形全等的条件,以及运用边边边定理画一角等于已知角
教学方法
学生合作探究法、教师讲解结合谈话法等综合教学方法
教学手段
黑板板书教学
课 堂 教 学 设 计
阶段
教学内容
导入部分
采用复习导入,教师首先提问学生回顾全等三角形的定义,以及全等三角形的性质。
学生在复习以上知识的条件下教师做出解释,上节课我们已经学习了三角形在满足三边对应相等,三角对应相等,则两三角形全等,那么在实际的运用过程中,需要这么多条件运用会很不方便,那么我们很容易想到,能不能简化条件,得出三角形全等呢?由此引出课题全等三角形的判定。
阶段
课堂教学设计
课程新授
教师让学生大胆想象,可以从一组对应关系相等开始探究,逐步上升到两组对应关系相等三组对应关系相等。
但是为了节约时间,可以让学生从两组开始,如若两组都不行,那一组肯定也不行,反之如若两组条件就足够了,再回头看看一组的情况。
接下来学生在教师的提问下思考二组对应条件的所有可能的情况,预设会有思考不全面的同学,教师即使揭示在一组边与一组角相等的情况下,边与角的关系可以为相邻,也有可能为相对。
学生在教师的提示下,探索发现满足两组对应关系相等的三角形不一定全等,由此可以断定一组对应关系相等也不能作为判定三角形全等的条件。接下来直接考虑三组对应相等关系的情况。
首先引导学生对三组对应关系相等进行分类。
预设学生部分可以全部考虑到,部分学生考虑不周到,这时教师可以请会的同学展示被同学忽略的情况即两组角与一组对边对应相等时,边可以为对边,也可以为邻边。
本节课将引导学生探索三边相等的情形,有了前面两组对应相等的经验,预设学生根据尺规作图可以画出三边等于已知三角形的三角形,接下来通过三角形全等的定义,让学生动手操作进行验证,发现可以完全重合,由此我们得到三组边对应相等的三角形全等。即SSS,教师解释S为英文边,side的首字母。
接下来请同学说出已知三角形与所作三角形之间存在的对应相等关系,预设学生可以很轻易说出。
由此教师揭示,实际上我们还学回了一个做角等于一只角的另外一种做法,即运用尺规作图画一角等于已知角。接下来,教师稍作解释,请学生探究讨论作图步骤。看谁的最简便。
学生探索过后,教师请学生回答自己的作图步骤,最后由教师板书最简易的作图步骤。
之后我将用练习的方式,加深同学对边边边判定定理的理解并加强应用能力。
作业
作业为书上的练习第二题,以及课后作业的第四题对应基础性练习即巩固性练习。
板书设计
采用归纳式的板书设计,主要板书两种即三种对应关系相等的种类,边边边判定定理的内容以及画一角等于已知角的步骤以及重要练习的过程。
小结
本结课内容比较多,主要体现在全等三角形判定的探索过程,为了节约时间,我选择让学生直接从两个条件开始探究,同时也不影响学生理解,教师主要以引导为主,学生自主探索学习。
全等三角形教案3
一、教材分析
(一) 本节内容在教材中的地位与作用。
对于全等三角形的研究,实际是*面几何中对封闭的两个图形关系研究的第一步。它是两三角形间最简单、最常见的关系。本节《探索三角形全等的条件》是学生在认识三角形的基础上,在了解全等图形和全等三角形以后进行学习的,它既是前面所学知识的延伸与拓展,又是后继学习探索相似形的条件的基础,并且是用以说明线段相等、两角相等的重要依据。因此,本节课的知识具有承上启下的作用。同时,人教版教材将“边角边”这一识别方法作为五个基本事实之一,说明本节的内容对学生学习几何说理来说具有举足轻重的作用。
(二) 教学目标
在本课的教学中,不仅要让学生学会“边角边”这一全等三角形的识别方法,更主要地是要让学生掌握研究问题的方法,初步领悟分类讨论的数学思想。同时,还要让学生感受到数学来源于生活,又服务于生活的基本事实,从而激发学生学习数学的兴趣。为此,我确立如下教学目标:
(1)经历探索三角形全等条件的过程,体会分析问题的方法,积累数学活动的经验。
(2)掌握“边角边”这一三角形全等的识别方法,并能利用这些条件判别两个三角形是否全等,解决一些简单的实际问题。
(3)培养学生勇于探索、团结协作的精神。
(三) 教材重难点
由于本节课是第一次探索三角形全等的条件,故我确立了以“探究全等三角形的必要条件的个数及探究边角边这一识别方法作为教学的重点,而将其发现过程以及边边角的辨析作为教学的难点。同时,我将采用让学生动手操作、合作探究、媒体演示的方式以及渗透分类讨论的数学思想方法教学来突出重点、突破难点。
(四)教学具准备,教具:
相关多媒体课件;学具:剪刀、纸片、直尺。画有相关图片的作业纸。
二、教法选择与学法指导
本节课主要是“边角边”这一基本事实的发现,故我在课堂教学中将尽量为学生提供“做中学”的时空,让学生进行小组合作学习,在“做”的过程中潜移默化地渗透分类讨论的数学思想方法,遵循“教是为了不教”的原则,让学生自得知识、自寻方法、自觅规律、自悟原理。
三、教学流程
(一)创设情景,激发求知欲望
首先,我出示一个实际问题:
问题:皮皮公司接到一批三角形架的加工任务,客户的要求是所有的三角形必须全等。质检部门为了使产品顺利过关,提出了明确的要求:要逐一检查三角形的三条边、三个角是不是都相等。技术科的毛毛提出了质疑:分别检查三条边、三个角这6个数据固然可以。但为了提高我们的效率,是不是可以找到一个更优化的方法,只量一个数据可以吗?两个呢?……
然后,教师提出问题:毛毛已提出了这么一个设想,同学们是否可以和毛毛一起来攻克这个难题呢?
这样设计的目的是既交代了本节课要研究和学习的主要问题,又能较好地激发学生求知与探索的欲望,同时也为本节课的教学做好了铺垫。
(二)引导活动,揭示知识产生过程
数学教学的本质就是数学活动的教学,为此,本节课我设计了如下的系列活动,旨在让学生通过动手操作、合作探究来揭示“边角边”判定三角形全等这一知识的产生过程。
活动一:让学生通过画图或者举例说明,只量一个数据,即一条边或一个角不能判断两个三角形全等。
活动二:让学生就测量两个数据展开讨论。先让学生分析有几种情况:即边边、边角、角角。再由各小组自行探索。同样可以让学生举反例说明,也可以通过画图说明。
活动三:在两个条件不能判定的基础上,只能再添加一个条件。先让学生讨论分几种情况,教师在启发学生有序思考,避免漏解。
教师提出3个角不能判定两三角形全等,实质我们已经讨论过了。明确今天的任务:讨论两条边一个角是否可以判定两三角形全等。师生再共同探讨两边一角又分为两边一夹角与两边一对角两种情况。
活动四:讨论第一种情况:各小组每人用一张长方形纸剪一个直角三角形(只用直尺和剪刀),怎样才能使各小组内部剪下的直角三角形都全等呢?主要是让学生体验研究问题通常可以先从特殊情况考虑,再延伸到一般情况。
活动五:出示课本上的3幅图,让学生通过观察、进行猜想,再测量或剪下来验证。并说说全等的图形之间有什么共同点。
活动六:小组竞赛:每人画一个三角形,其中一个角是30°,有两条边分别是7cm、5cm,看哪组先完成,并且小组内是全等的。这样既调动了学生的积极性,又便于发现边角边的识别方法。
最后教师再用几何画板演示,学生进行观察、比较后,师生共同分析、归纳出“边角边”这一识别方法。
若有小组画成边边角的形式,则顺势引出下面的探究活动。否则提出:若两个三角形有两条边及其中一边的对角对应相等,则这两个三角形一定全等吗?
活动七:在给出的画有 的图上,让学生自主探究(其中另一条边为5cm),看画出的三角形是否一定全等。让学生在给出的图上研究是为了减小探索的麻木性。
教师用几何画板演示,让学生在辨析中再次认识边角边。同时完成课后练习第一题。
(三)例题教学,发挥示范功能
例题教学是课堂教学的一个重要环节,因此,如何充分地发挥好例题的教学功能是十分重要的。为此,我将充分利用好这道例题,培养学生有条理的说理能力,同时,通过对例题的变式与引伸培养学生发散思维能力。
首先,我将出示课本例1,并设计下列系列问题,让学生一步一步地走向“知识获得与应用”的理想彼岸。
问题1: 请说说本例已知了哪些条件,还差一个什么条件,怎么办?(让学生学会找隐含条件)。
问题2: 你能用“因为……根据……所以……”的表达形式说说本题的说理过程吗?
问题3: △ADC可以看成是由△ABC经过怎样的图形变换得到的?
在探索完上述3个问题的基础上,对例题作如下的变式与引伸:
△ABC与△ADC全等了,你又能得到哪些结论?连接BD交AC于O,你能说明△BOC与△DOC全等吗?若全等,你又能得到哪些结论?
这样设计的目的在于体现“数学教学不仅仅是数学知识的教学,更重要的发展学生数学思维的教学”这一思想。
在例题教学的基础上,为了及时的反馈教学效果,也为提高学生知识应用的水*,达到及时巩固的目的,我设计了如下两个练习:
(1) 基础知识应用。完成教材P139练一练2。
(2) 已知如图:,请你添加一些适当的条件,再根据SAS的识别方法说明两个三角形全等。对学生进行逆向思维训练,同时让学生发现对顶角这一隐含条件。
(四)课堂小结,建立知识体系。
(1) 本节课你有哪些收获:重点是将研究问题的方法进行一次梳理,对边角边的识别方法进行一次回顾。
(2) 你还有哪些疑问?
全等三角形教案4
教学建议
直角三角形全等的判定
知识结构
重点与难点分析:
本节课教学方法主要是“自学辅导与发现探究法”。力求体现知识结构完整、知识理解完整;注重学生的参与度,在师生共同参与下,探索问题、动手试验、发现规律、做出归纳。让学生直接参加课堂活动,将教与学融为一体。具体说明如下:
(1)由“先教后学”转向“先学后教
本节课开始,让同学们自己思考问题:判定三角形全等的方法有四种,如果这两个三角形是直角三角形,那么判定它们全等的方法有哪些呢?学生展开讨论,初步形成意见,然后由教师答疑。这样促进了学生学习,体现了以“学生为主体”的教育思想。
(2)在层次教学中培养学生的思维能力
本节课的层次主要表现为两个方面:一是对公理的多层次理解;二是综合练习的多层次变化。
公理的多层次理解包括:明确公理的条件及结论;公理的文字语言、图形语言、符号语言的理解及掌握;公理的作用。这里特别强调三个方面:1、特殊三角形的特殊性;2、归纳总结判定直角三角形全等的方法。
综合练习的多层次变化:首先给出直接应用公理证明三角形全等的题目;然后给出变式题目;最后给出综合应用题目。这里注意两点:一是给出题目后先让学生独立思考,并按教材的形式严格书写。二是给出的综合题目有一定的难度,教学时,要注意引导学生分析问题解决问题的思考方法。
教法建议:
由“先教后学”转向“先学后教”
本节课开始,让同学们自己思考问题:判定三角形全等的方法有四种,如果这两个三角形是直角三角形,那么判定它们全等的方法有哪些呢?学生展开讨论,初步形成意见,然后由教师答疑。这样促进了学生学习,体现了以“学生为主体”的教育思想。
(2)在层次教学中培养学生的思维能力
本节课的层次主要表现为两个方面:一是对公理的多层次理解;二是综合练习的多层次变化。
公理的多层次理解包括:明确公理的`条件及结论;公理的文字语言、图形语言、符号语言的理解及掌握;公理的作用。这里特别强调三个方面:1、特殊三角形的特殊性;2、归纳总结判定直角三角形全等的方法。
综合练习的多层次变化:首先给出直接应用公理证明三角形全等的题目;然后给出变式题目;最后给出综合应用题目。这里注意两点:一是给出题目后先让学生独立思考,并按教材的形式严格书写。二是给出的综合题目有一定的难度,教学时,要注意引导学生分析问题解决问题的思考方法。
教学目标:
1、知识目标:
(1)掌握已知斜边、直角边画直角三角形的画图方法;
(2)掌握斜边、直角边公理;
(3)能够运用HL公理及其他三角形全等的判定方法进行证明和计算.
2、能力目标:
(1)通过尺规作图使学生得到技能的训练;
(2)通过公理的初步应用,初步培养学生的逻辑推理能力.
3、情感目标:
(1)在公理的形成过程中渗透:实验、观察、归纳;
(2)通过知识的纵横迁移感受数学的系统特征。
教学重点:SSS公理、灵活地应用学过的各种判定方法判定三角形全等。
教学难点:灵活应用五种方法(SAS、ASA、AAS、SSS、HL)来判定直角三角形全等。
教学用具:直尺,微机
教学方法:自学辅导
教学过程:
1、新课引入
投影显示
问题:判定三角形全等的方法有四种,若这两个三角形是直角三角形,那么判定它们全等的方法有哪些呢?
这个问题让学生思考分析讨论后回答,教师补充完善。
2、公理的获得
让学生概括出HL公理。然后和学生一起画图做实验,根据三角形全等定义对公理进行验证。(这里用尺规画图法)
公理:有斜边和一条直角边对应相等的两个直角三角形全等。
应用格式: (略)
强调说明:
(1)、格式要求:先指出在哪两个三角形中证全等;再按公理顺序列出三个条件,并用括号把它们括在一起;写出结论。
(2)、判定两个直角三角形全等的方法。
(3)特殊三角形研究思想。
3、公理的应用
(1)讲解例1(投影例1)
例1求证:有一条直角边和斜边上的高对应相等的两个直角三角形全等。
学生思考、分析、讨论,教师巡视,适当参与讨论。找学生代表口述证明思路。
分析:首先要分清题设和结论,然后按要求画出图形,根据题意写出、已知求证后,再写出证明过程。
证明:(略)
(2)讲解例2。学生分析完成,教师注重完成后的点评。)
例2:如图2,△ABC中,AD是它的角*分线,且BD=CD,DE、DF分别垂直于AB、AC,垂足为E、F.
求证:BE=CF
分析: BE和CF分别在△BDE和△CDF中,由条件不能直接证其全等,但可先证明△AED≌△AFD,由此得到DE=DF
证明:(略)
(3)讲解例3(投影例3)
例3:如图3,已知△ABC中,∠BAC=,AB=AC,AE是过A的一条直线,且B、C在AE的异侧,BD⊥AE于D,CE⊥AE于E,求证:
(1)BD=DE+CE
(2)若直线AE绕A点旋转到图4位置时(BD<CE),其余条件不变,问BD与DE、CE的关系如何,请证明;
(3)若直线AE绕A点旋转到图5时(BD>CE),其余条件不变,BD与DE、CE的关系怎样?请直接写出结果,不须证明
学生口述证明思路,教师强调说明:阅读问题的思考方法及思想。
4、课堂小结:
(1)判定直角三角形全等的方法:5个(SAS、ASA、AAS、SSS、HL)在这些方法的条件中都至少包含一条边。
(2)直角三角形判定方法的综合运用
让学生自由表述,其它学生补充,自己将知识系统化,以自己的方式进行建构。
5、布置作业:
a、书面作业P79#7、9
b、上交作业P80#5、6
板书设计:
探究活动
直角形全等的判定
如图(1)A、E、F、C在一条直线上,AE=CF,过E、F分别作DE⊥AC,BF⊥AC,
若AB=CD求证:BD*分EF。若将△DEC的边EC沿AC方向移动变为如图(2)时,其余条件不变,上述结论是否成立,请说明理由。
全等三角形教案5
课题:全等三角形
教学目标:
1、知识目标:
(1)知道什么是全等形、全等三角形及全等三角形的对应元素;
(2)知道全等三角形的性质,能用符号正确地表示两个三角形全等;
(3)能熟练找出两个全等三角形的对应角、对应边。
2、能力目标:
(1)通过全等三角形角有关概念的学习,提高学生数学概念的辨析能力;
(2)通过找出全等三角形的对应元素,培养学生的识图能力。
3、情感目标:
(1)通过感受全等三角形的对应美激发学生热爱科学勇于探索的精神;
(2)通过自主学习的发展体验获取数学知识的感受,培养学生勇于创新,多方位审视问题的创造技巧。
教学重点:全等三角形的性质。
教学难点:找全等三角形的对应边、对应角
教学用具:直尺、微机
教学方法:自学辅导式
教学过程:
1、全等形及全等三角形概念的引入
(1)动画(几何画板)显示:
问题:你能发现这两个三角形有什么美妙的关系吗?
一般学生都能发现这两个三角形是完全重合的。
(2)学生自己动手
画一个三角形:边长为4cm,5cm,7cm.然后剪下来,同桌的两位同学配合,把两个三角形放在一起重合。
(3)获取概念
让学生用自己的语言叙述:
全等三角形、对应顶点、对应角以及有关数学符号。
2、全等三角形性质的发现:
(1)电脑动画显示:
问题:对应边、对应角有何关系?
由学生观察动画发现,两个三角形的三组对应边相等、三组对应角相等。
3、 找对应边、对应角以及全等三角形性质的应用
(1) 投影显示题目:
D、AD∥BC,且AD=BC
分析:由于两个三角形完全重合,故面积、周长相等。至于D,因为AD和BC是对应边,因此AD=BC。C符合题意。
说明:本题的解题关键是要知道中两个全等三角形中,对应顶点定在对应的位置上,易错点是容易找错对应角。
分析:对应边和对应角只能从两个三角形中找,所以需将从复杂的图形中分离出来
说明:根据位置元素来找:有相等元素,其即为对应元素:
然后依据已知的对应元素找:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角。
说明:利用“运动法”来找
翻折法:找到中心线经此翻折后能互相重合的两个三角形,易发现其对应元素
旋转法:两个三角形绕某一定点旋转一定角度能够重合时,易于找到对应元素
*移法:将两个三角形沿某一直线推移能重合时也可找到对应元素
求证:AE∥CF
分析:证明直线*行通常用角关系(同位角、内错角等),为此想到三角形全等后的性质――对应角相等
∴AE∥CF
说明:解此题的关键是找准对应角,可以用*移法。
分析:AB不是全等三角形的对应边,
但它通过对应边转化为AB=CD,而使AB+CD=AD-BC
可利用已知的AD与BC求得。
说明:解决本题的关键是利用三角形全等的性质,得到对应边相等。
(2)题目的解决
这些题目给出以后,先要求学生独立思考后回答,其它学生补充完善,并可以提出自己的看法。教师重点指导,师生共同总结:找对应边、对应角通常的几种方法:
投影显示:
(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;
(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角;
(3)有公共边的,公共边一定是对应边;
(4)有公共角的,角一定是对应角;
(5)有对顶角的,对顶角一定是对应角;
两个全等三角形中一对最长边(或最大角)是对应边(或对应角),一对最短边(或最小的角)是对应边(或对应角)
4、课堂独立练习,巩固提高
此练习,主要加强学生的识图能力,同时,找准全等三角形的对应边、对应角,是以后学好几何的关键。
5、小结:
(1)如何找全等三角形的对应边、对应角(基本方法)
(2)全等三角形的性质
(3)性质的应用
让学生自由表述,其它学生补充,自己将知识系统化,以自己的方式进行建构。
6、布置作业
a.书面作业P55#2、3、4
b.上交作业(中考题)
思考题:
板书设计:
探究活动
(2)证明 :AF∥DE
全等三角形教案6
一、教学内容分析
本节课选自北师大版《七年级数学下册》第五章第四节探索三角形全等的条件第一课时,本节课探索第一种判定方法—边边边,为了使学生更好地掌握这一部分内容,遵循启发式教学原则,用设问形式创设问题情景,设计一系列实践活动,引导学生操作、观察、探索、交流、发现、思维,真正把学生放到主*置,发展学生的空间观念,体会分析问题、解决问题的方法,积累数学活动经验,为以后的证明打下基础。
二、学生学习情况分析
学生的知识技能基础:学生在前几节中,已经了解了三角形的有关概念(内角、外角、中线、高、角*分线),以及三角形三边之间的关系、图形的全等,对本节课要学习的三角形全等条件中的“边边边”和三角形的稳定性来说已经具备了一定的知识技能基础。
学生活动经验基础:在相关知识的学习过程中,学生已经经历了一些探索图形全等的活动,通过拼图、折纸等方式解决了一些简单的现实问题,获得了一些数学活动经验的基础;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。
三、设计思想
我们所在的学校处于市区,教学设备齐全,学生学习基础较好,在这之前他们已了解了图形全等的概念及特征,掌握了全等图形的对应边、对应角的关系,这为探究三角形全等的条件做好了知识上的准备。另外,学生也基本具备了利用已知条件拼出三角形的能力,具备探索的热情和愿望,这使学生能主动参与本节课的操作、探究。遵循启发式教学原则,采用引探式教学方法。用设问形式创设问题情景,设计一系列实践活动,引导学生操作、观察、探索、交流、发现、思维,真正把学生放到主*置,发展学生的空间观念,体会分析问题、解决问题的方法。
四、教学目标
1.知识与技能目标:掌握三角形全等的“边边边”条件,了解三角形的稳定性。
2.过程与方法目标:在探索三角形全等的条件及其运用的过程中,体会利用操作、归纳获得数学结论的过程,初步形成解决问题的基本策略。
3.情感与态度价值观目标:通过探索活动,体验数学知识在现实生活中的广泛应用,培养学生勇于探索、敢于创新的精神。
五、教学重点和难点
重点:三角形全等条件的探索过程和三角形全等的“边边边”条件。
难点:三角形全等条件的探索中的分类思想的渗透。
六、教学过程设计
具体设计的教学过程描述如下:
(一)创设情境,提出问题
1.出示多媒体:
大家来看一个问题:这是一块三角形玻璃窗,里面的玻璃“啪”地一声损坏了,现在要打电话给玻璃店的老板配一块与损坏的玻璃大小相等形状相同的三角形玻璃,至少要报给玻璃店的老板(这块破裂三角形玻璃)几个数据呢?
[学情预设]学生考虑情况和条件多,大多围绕角和边进行分析。
[设计意图]通过问题情境的创设,不但引入了本课的课题,而且激发了学生的好奇心和求知欲,调动了学生的学习积极性,使他们体会探索的过程是为了解决问题的实际需要。联系生活,充分调动学生的积极性(让学生动起来)。
(二)探索发现,合作交流
1.一个条件
按照三角形“边、角”元素进行分类,师生共同归纳得出:
一个条件: 一边,一角;
再按以上分类顺序动脑、动手操作验证。
2.验证过程可采取以下方式:
画一画:按照下面给出的一个条件各画出一个三角形。
①三角形的一条边长是8cm;
②三角形的一个角为 60°。
剪一剪:把所画的三角形分别剪下来。
比一比:同一条件下作出的三角形与其他同学作的比一比,是否全等。
对只给一个条件画三角形,画出的三角形一定全等吗?
同组同学互相比较,观察得出结果。小组代表说明本小组的结论。
再结合展示幻灯片。以便强化结论。
教师收集学生的作品,加以比较,得出结论:只给出一个条件时,不能保证所画出的三角形一定全等。
3.二个条件
继续探索二个条件的情况,师生共同归纳得出:
两个条件: 二边,一边一角,二角;
[教师活动]教师积极帮助学生分析、归纳,对学生在分类中出现的问题,教师予以有序的引导。重点抓住“边”按“边”由多到少的顺序给出。
[设计意图]因为初一学生缺乏思维的严谨性,不能对问题做出全面、正确的分析,并对各种情况进行讨论,所以教师设计上述问题,逐步引导学生归纳出三种情况,分别进行研究,向学生渗透分类讨论的思想。从一个,两个到三个条件。培养学生思维的主动性和广阔性。很自然的突破难点。
4.画一画:按照下面给出的两个条件各画出一个三角形。
①三角形的两条边分别是:8cm,10cm;
②三角形一条边为7cm,一个角为 30°;
③三角形的两个角分别是:30°,50°。
剪一剪:把所画的三角形分别剪下来。
比一比:同一条件下作出的三角形与其他同学作的比一比,是否全等。
[学情预设]学生按条件画三角形,然后将所画的三角形分别剪下来,把同一条件下画出的三角形与其他同学画的比一比。
[教师活动]在此教师给学生留出充分的时间画图、观察、比较、交流,然后教师收集学生的作品,加以比较,为学生顺利探索出结论创造条件。
5.学生展示本小组的结论
[设计意图]培养学生的合作意识调动学生的主观能动性,使学生积极主动地参与教学活动,使学生对只有两个条件得不到三角形全等有更直观的认识。
[知识链接]这一知识点既是对后续归纳总结起到实验性证明。
6.教师同时展示幻灯片,加以比较说明,得出结论:只给出两个条件时,不能保证所画出的三角形一定全等。
[设计意图]从实践操作中,引发总结,将前面画图的结果升华成理论,让学生学会思考,善于思考。参与构建对知识的形成和体验。
7. 继续探索三个条件的情况,师生共同归纳得出:
三个条件: 三边,两边一角,一边两角,三角
再继续探索三个条件中的三条边的情况。
8. 画一画:在硬纸板上画出三条边分别是 10cm,12cm,14cm 的三角形。
(对画图有困难的同学提示:用长度分别为10cm、12cm、14cm小棒拼一个三角形并在硬纸板上画出)
剪一剪:用剪刀剪下画出的三角形,与周围同学比较一下,你们所剪下的三角形是否都全等。
比一比:作出的三角形与其他同学作的比一比,是否全等。
9.全班几十个三角形摞在讲台上,形成一个高高的三棱柱模型。学生看着讲台上的三棱柱,心中充满了自豪。
[学情预设] 全班几十个三角形摞在讲台上,形成了一个高高的三棱柱。学生看着讲台上的三棱柱,心中充满了自豪。
[设计意图]培养学生的合作意识、创造性思维,合理猜想,为得出SSS来进行三角形全等的验证作了铺垫。深入探索使学生积极主动地参与教学活动,使学生更利于理解SSS。很自然的突出重点。
(三)、归纳结论,解决问题
1.从上面的活动中,我们总结出:
三边对应相等的两个三角形全等,简写为“边边边”或“SSS”
学生由理解上升到口述出原理,以便以后更好的运用到实践中去。
[学情预设]学生口述,从口头表达上升到书面表达。对学生的回答是否正确全面,都要给予肯定和鼓励,更好的促进他们学习的积极性。
2.成功的解决了上面提出的玻璃问题。
我们只要报给玻璃店的老板三条边长就可以配一块与损坏的玻璃大小相等形状相同的三角形玻璃。
(三条边就可以做出一模一样的三角形玻璃)为学生继续探索三个条件的其他情况,铺下了好的问题情境。(对于两边一角,一边两角和三个角,我们将下一节课研究)
[设计意图]学以致用,发现问题解决问题。
全等三角形教案7
【课前准备】
1.定义:能够的两个三角形叫全等三角形。
2.全等三角形的性质,全等三角形的判定方法见下表。
【例题讲解】
一.挖掘“隐含条件”判全等
如图,△ABE≌△ACD,由此你能得到什么结论?(越多越好)
1.如图AB=CD,AC=BD,则△ABC≌△DCB吗?说说理由.
变式训练:AC=BD,∠CAB=∠DBA,试说明:BC=AD
2.如图点D在AB上,点E在AC上,CD与BE相交于点O,
且AD=AE,AB=AC.若∠B=20°,CD=5cm,则∠CD的度数与BE的长。
3.如图若OB=OD,∠A=∠C,若AB=3cm,求CD的长。
变式训练2,如图AC=BD,∠C=∠D试说明:(1)AO=BO(2)CO=DO(3)BC=AD
二.添条件判全等
1.如图,已知AD*分∠BAC,要使△ABD≌△ACD,
根据“SAS”需要添加条件;
根据“ASA”需要添加条件;
根据“AAS”需要添加条件.
2.已知AB//DE,且AB=DE,
(1)请你只添加一个条件,使△ABC≌△DEF,
你添加的条件是.
三.熟练转化“间接条件”判全等
1.如图,AE=CF,∠AFD=∠CEB,DF=BE,△AFD与△CEB全等吗?
为什么?
2.如图,∠CAE=∠BAD,∠B=∠D,AC=AE,△ABC与△ADE全等吗?为什么?
3.“三月三,放风筝”,如图是小明同学制作的风筝,他根据AB=AD,CB=CD,不用度量,他就知道∠ABC=∠ADC,请你用学过的知识给予说明.
巩固练习:如图,在中,,沿过点B的一条直线BE
折叠,使点C恰好落在AB变的中点D处,则∠A的度数.
4.如图,点E,F在BC上,BE=CF,AB=DC,∠B=∠C.说明:∠A=∠D
【当堂反馈】
1.(20**攀枝花市)如图,点E在AB上,AC=AD,请你添加一个条件,使图中存在全等三角形,并给予证明.所添条件为全等三角形是△≌△
2.如图,已知AB=AD,∠B=∠D,∠1=∠2,说明:BC=DE
3.如图,已知AB=DE,∠D=∠B,∠EFD=∠BCA,说明:AF=DC
4.等腰直角△ABC,其中AB=AC,∠BAC=90°,过B、C作经过A点直线L的垂线,垂足分别为M、N
(1)你能找到一对三角形的全等吗?并说明.
(2)BM,CN,MN之间有何关系?
若将直线l旋转到如下图的位置,其他条件不变,那么上题的结论是否依旧成立?
【课后作业】
1.如图,要用“SAS”说明ΔABC≌ΔADC,若AB=AD,则需要添加的条件是.
要用“ASA”说明ΔABC≌ΔADC,若∠ACB=∠ACD,则需要添加的条件是.
2..如图,在ΔABC中,AD⊥BC,CE⊥AB.垂足分别为D.E,AD.CE交于点H,请你添加一个适当的条件:,使ΔAEH≌ΔCEB.
(第3题)
(第4题)(第5题)(第6题)
3.如图,已知AD*分∠BAC,AB=AC,则此图中全等三角形有()
A..2对B.3对C.4对D.5对
4.如图,ΔABC中,AB=AC,BE=EC,则由“SSS”可判定()
A.ΔABD≌ΔACDB.ΔABE≌ΔACEC.ΔBED≌ΔCEDD.以上答案都不对
5.如图,Rt△ABC中,∠C=90°,∠CAB=30°,用圆规和直尺作图,用两种方法把它分成两个三角形,且其中一个是等腰三角形.(保留作图痕迹,不要求写作法和证明).
6.如图,一个六边形钢架ABCDEF,由6条钢管连接而成,为使这一钢架稳固,请你用3条钢管使它不能活动,你能设计两种不同的方案吗?
7:如图11-9在△ABC中.⑴分别以AB、AC为边向形外作正方形ABDE、ACFG.
试说明:①CE=BG;②CE⊥BG;
⑵如图11-10分别以AB、AC为边向形外作正三角形△ABD、△ACE.
试说明:①CD=BE;②求CD和BE所成的锐角的度数.
【拓展延伸】
如图①,E、F分别为线段AC上的两个动点,且DE⊥AC于E,BF⊥AC于F,若AB=CD,AF=CE,BD交AC于点M.(1)求证:MB=MD,ME=MF
(2)当E、F两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由.
全等三角形教案8
教材分析:
《三角形全等复习课内容》选用义务教育课程标准实验教材《数学》(华师大版)九年级上册,三角形全等是初中数学中重要的学习内容之一。本套教材把三角形全等看作是三角形相似的特殊情况,同时三角形全等的概念,三角形全等的识别方法,与命题与证明,尺规作图几部分内容相互联系紧密,尤其是尺规作图中作法的合理性和正确性的解释依赖于全等知识。本章中三角形全等的识别方法的给出都通过同学们画图、讨论、交流、比较得出,注重同学们实际操作能力,为培养同学们参与意识和创新意识提供了机会。
设计理念:
针对教材内容和初三同学们的实际情况,组织同学们通过摆拼全等三角形和探求全等三角形的活动,让同学们感悟到图形全等与*移、旋转、对称之间的关系,并通过同学们动手操作,让同学们掌握全等三角形的一些基本形式,在探求全等三角形的过程中,做到有的放矢。然后利用角*分线为对称轴来画全等三角形的方法来解决实际问题,从而达到会辨、会找、会用全等三角形知识的目的。
教学目标:
1、通过全等三角形的概念和识别方法的复习,让同学们体会辨别、探寻、运用全等三角形的一般方法,体会主动实验,探究新知的方法。
2、培养同学们观察和理解能力,几何语言的叙述能力及运用全等知识解决实际问题的能力。
3、在同学们操作过程中,激发同学们学习的兴趣,培养同学们主动探索,敢于实践的精神,培养同学们之间合作交流的习惯。
教学的重点和难点:
重点:运用全等三角形的识别方法来探寻三角形以及运用全等三角形的知识解决实际问题。
难点:运用全等三角形知识来解决实际问题。
教学过程设计:
一、创设问题情境:
某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块形状完全相同的玻璃,那么你认为它应保留哪一块?(教师用多媒体)
师:请同学们先独立思考,然后小组交流意见
生:…………
师:上述问题实质是判断三角形全等需要什么条件的问题。
今天我们这节课来复习全等三角形。(引出课题)。
师:识别三角形及等的方法有哪些?
生:SAS 、 SSS、 ASA、 AAS 、 HL。
复习回顾:练习1、将两根钢条AA/、BB/中点O连在一起,使AA/、BB/绕着点O自由转动,做成一个测量工具,则A/B/的长等于内槽宽AB,判定△OAB≌△OA/B/现由( )
练习2、已知AB//DE,且AB=DE,
(1)请你只添加一个条件,使△ABC≌△DEF,
你添加的条件是
(2)添加条件后,证明△ABC≌△DEF?
[根据不同的添加条件,要求同学们能够叙述三角形全等的条件和全等的现由,鼓励同学们大胆的表述意见]
二、探求新知:
师:请同学们将两张纸叠起来,剪下两个全等三角形,然后将叠合的两个三角形纸片放在桌面上,从*移、旋转、对称几个方面进行摆放,看看两个三角形有一些怎样的特殊位置关系?
请同组合作,交流,并把有代表性的摆放进行投影。
熟记全等三角形的基本形式,为探求全等三角形打下基础,提醒同学们注意两个全等三角形的对应边和对应角。同学们的摆放形式很多,包括那些*时数学成绩不好的同学们也跃跃欲试,教师给予肯定和鼓励激发他们学习的积极性和主动性。
例1、如图一张矩形纸片沿着对角线剪开,得到两张三角形纸片ABC、DEF,再将这两张三角形纸片摆成右图的形式,使点B、F、C、D处在同一条直线上,P、M、N为其他直线的交点。
(1)求证:AB⊥ED
(2)若PB=BC,请找出右图中全等三角形,并给予证明。
用多媒体演示图形的变化过程。
师:图3中AB与ED有怎样的位置关系?同同学们猜想一下结果。
生甲:AB垂直ED
师:为什么?可以从几方面来考虑?
生乙:可以从图形运动变化的过程来考虑
生丙:可以考虑全等在已知条件下,显然有△ABC≌△DEF,故∠A=∠D,又∠ANP=∠DNC,所以,∠APN=∠DCN=900,即AB⊥ED。
(根据同学们的回答,教师板演)
师:若PB=BC,找出右图中全等三角形,看看谁能找得最快?
生丁:△PBD≌△CBA(ASA)
师:板演,由AB⊥ED,可得到∠BPD=900,∠BPD=∠CBA,∠A=∠D,PB=BC,故有△PBD≌△CBA(ASA)。
师:还有其他三角形全等吗?
生:有,我连接BN,由勾股定理得PN=CN,就不难得到△APN≌△DCN。
(在错综复杂的图形中寻找全等三角形是一件不容易的事,要鼓励同学们大胆的猜想,努力探求,在同学们的叙述过程中,教师及时纠正同学们叙述中的错误,训练同学们严谨的学习态度和学习习惯。)
例2、(动手画)(1)已知OP为∠AOB*分线,请你利用该图画一对以OP所在直线为对称轴的全等三角形。
教师在黑板上画好∠AOB和直线OP,同学们独立思考,然后请几个同学们在黑板上演示。
师生总结:想要画出符合条件的三角形,只要在射线OA、OB上找到一对关于OP对称的点就可以了。
(2)利用上图作全等三角形方法,在△ABC中,∠B=600,∠ABC是直角,AD、CE是∠BAC,∠DCA的*分线,AD、CE相交于F,请判断FE与FD间数量关系。
师:请同学们用三角尺和量角器准确画出此图,然后量出EF、FD的长度,看看EF与FD长度
关系如何?
生:基本相等。
生:长度相等。
师:如何来证明他们相等?注意审题。
同学们先独立思考后,组内交流,等到有同学举手发言。
生:在AC上取点H,使AH=AE,则△AEF≌△AHF则EF=FH
师:为什么要这么做?你是怎么想到的?
生:因为要证明线段相等要考虑三角形全等,而EF、FD所在两个三角形显然不全等,又AD是*分线,在AC上找出E关于AD有对称点H得到△AEF≌△AHF。
师:这样只能得到EF=FH。
生:再证明△FHC≌△FDC。
生:先求出AD、CE是角*分线∠APC=1200,则∠DPC=∠EPA=∠APH=600,所以∠HPC=
∠DPC=600,PC=PC,∠3=∠4,因为△HCP≌△DCP(ASA)所以PD=PH。
(看清题意,猜想结果是解决探究题的重要环节,教师要留给同学们一定思考时间,同时鼓励同学们尝试和交流,鼓励同学们勇于探索以及同学之间的合作。)
师生共同小结:
1、熟记全等三角形的基本形态,会找全等三角形的对应边和对应角。
2、在错综复杂的几何图形中能够寻找全等三角形。
3、利用角*分线的对称性构造三角形全等,并利用三角形的全等性质解决线段之间的等量关系。
4、运用全等三角形的识别法可以解决很多生活实际问题。
作业:
1、在例2中,如果∠ACB不是直角,而(1)中的其他条件不变,请问:你在(1)中所得结论能成立吗?若成立,请证明,若不成立,请说明理由。
2、书本课后复习题
教学反思:
本教学设计从以下三方面考虑:
1、根据同学们的学习情况,改进同学们的学习方式,强调合作交流,探索学习,教师在教学过程中,努力为同学们创设自主探索的氛围,让同学们真正成为课堂主体。
2、重视对同学们能力的培养,除常规的鼓励就大胆思考,积极发言,重视培养同学们观察、操作、测试、思考的能力,同学们的活跃,他们思考问题的方式是多种多样,教师从对完全更改,尊重他们的学习方式,这样有助于创新
3、重视对同学们学习习惯的培养,全等三角形是几何部分内容说明书,有较强逻辑性,教师板演,以及在同学们叙述中纠正同学们的错误,是培养同学们养成良好的习惯之一,同时同学们学习习惯多方面的,在合作交流中,培养同学们合作意识和合作习惯培养显得尤为重要。
全等三角形教案9
全等三角形教案
1.只给定一个角时:
2.给出的两个条件可能是:一边一内角、两内角、两边.
可以发现按这些条件画出的三角形都不能保证一定全等.
五、课堂小结
我们有五种判定三角形全等的方法:
1.全等三角形的定义
2.判定定理:边边边(SSS) 边角边(SAS) 角边角(ASA) 角角边(AAS)
六、布置作业
必做题:课本P44页习题12.2中的第6,选做题:第11题
七、板书设计
课 题 :12.2.4三角形全等的判定《4》
【教学目标】:
知识与技能:直角三角形全等的条件:“斜边、直角边”.
过程与方法:经历探究直角三角形全等条件的过程,体会一般与特殊的辩证关系.掌握直角三角形全等的条件:“斜边、直角边”.能运用全等三角形的条件,解决简单的推理证明问题.
情感态度与价值观:通过画图、探究、归纳、交流使学生获得一些研究问题的经验和方法.发展实践能力和创新精神
教学重点:运用直角三角形全等的条件解决一些实际问题。
教学难点:熟练运用直角三角形全等的条件解决一些实际问题。
教学方法:采用启发诱导,实例探究,讲练结合,小组合作等方法。
学情分析:这节课是学了全等三角形的边边边.边角边.角边角边后的一节课、根据直角三角形的特点、探讨出 “HL”.学生一定能理解。
课前准备 全等三角形纸片、三角板、
【教学过程】:
一、提出问题,复习旧知
1、判定两个三角形全等的方法: 、 、 、
2、如图,Rt△ABC中,直角边是 、 ,斜边是
3、如图,AB⊥BE于C,DE⊥BE于E,
(1)若∠A=∠D,AB=DE,
则△ABC与△DEF (填“全等”或“不全等” )
根据 (用简写法)
(2)若∠A=∠D,BC=EF,
则△ABC与△DEF (填“全等”或“不全等” )
根据 (用简写法)
(3)若AB=DE,BC=EF,
则△ABC与△DEF (填“全等”或“不全等” )
根据 (用简写法)
(4)若AB=DE,BC=EF,AC=DF
则△ABC与△DEF (填“全等”或“不全等” )
根据 (用简写法)
二 、创设情境,导入新课
如图,舞台背景的形状是两个直角三角形,工作人员想知道这两个直角三角形是否全等,但两个三角形都有一条直角边被花盆遮住无法测量.(播放)
(1)你能帮他想个办法吗?
(2)如果他只带了一个卷尺,能完成这个任务吗?
(1)[生]能有两种方法.
第一种方法:用直尺量出斜边的长度,再用量角器量出其中一个锐角的大小,若它们对应相等,根据“AAS”可以证明两直角三角形是全等的.
第二种方法:用直尺量出不被遮住的直角边长度,再用量角器量出其中一个锐角的大小,若它们对应相等,根据“ASA”或“AAS”,可以证明这两个直角三角形全等.
可是,没有量角器,只有卷尺,那么他只能量出斜边长度和不被遮住的直角边边长,可是它们又不是“两边夹一角的关系”,所以我没法判定它们全等.
[师]这位师傅量了斜边长和没遮住的直角边边长,发现它们对应相等,于是他判断这两个三角形全等.你相信吗?
三、探究
做一做:
已知线段AB=5c,BC=4c和一个直角,利用尺规做一个直角三角形,使∠C=90°,AB作为斜边.做好后,将△ABC剪下与同伴比较,看能发现什么规律?
(学生自主完成后,与同伴交流作图心得,然后由一名同学口述作图方法.老师做多媒体演示,激发学习兴趣).
作法:
第一步:作∠MCN=90°.
第二步:在射线CM上截取CB=4c.
第三步:以B为圆心,5c为半径画弧交射线CN于点A.
第四步:连结AB.
就可以得到所想要的Rt△ABC.(如下图所示)
将Rt△ABC剪下,同一组的同学做的三角形叠在一起,发现这些三角形全等.
可以验证,对一般的直角三角形也有这样的规律.
探究结果总结:
斜边和一条直角边对应相等的两个直角三角形全等(可以简写成“斜边、直角边”和“HL”).
[师]你能用几种方法说明两个直角三角形全等呢?
[生]直角三角形也是三角形,一般来说,可以用“定义、SSS、SAS、ASA、AAS”这五种方法,但它又具有特殊性,还可以用“HL”的方法判定.
[师]很好,两直角三角形中由于有直角相等的条件,所以判定两直角三角形全等只须找两个条件,但这两个条件中至少要有一个条件是一对对应边才行.
四、例题:
[例1]如图,AC⊥BC,BD⊥AD,AC=BD. 求证:BC=AD.
分析:BC和AD分别在△ABC和△ABD中,所以只须证明△ABC≌△BAD,就可以证明BC=AD了.
证明:∵AC⊥BC,BD⊥AD
∴∠D=∠C=90°
在Rt△ABC和Rt△BAD中
∴Rt△ABC≌Rt△BAD(HL)
∴BC=AD.
[例2]有两个长度相等的滑梯,左边滑梯的高AC与右边滑梯水*方向的长度DF相等,两滑梯倾斜角∠ABC和∠DFE有什么关系?
[师生共析]∠ABC和∠DFE分别在Rt△ABC和Rt△DEF中,已知条件中这两个三角形又有一些对应的等量关系,所以可以证明这两个三角形全等得到对应角相等,显然,可以看出这两个角不相等,它们又是直角三角形中的锐角,是不是互余呢?我们试试看.
证明:在Rt△ABC和Rt△DEF中 又∵∠DEF+∠DFE=90°
∴∠ABC+∠DFE=90° 所以Rt△ABC≌Rt△DEF(HL)
∴∠ABC=∠DEF
即两滑梯的倾斜角∠ABC与∠DFE互余.
五、课时小结
至此,我们有六种判定三角形全等的方法:
1.全等三角形的定义 2.边边边(SSS) 3.边角边(SAS)
4.角边角(ASA) 5.角角边(AAS) 6.HL(仅用在直角三角形中)
六、布置作业
必做题: 课本P44页习题12.2中的第7,8,选做题:12,13题
七、板书设计
全等三角形教案10
教材分析
利用教科书提供的素材和活动,鼓励学生经历观察、操作、推理、想象等活动,发展学生的空间观念,体会分析问题、解决问题的方法,积累数学活动经验。培养学生有条理的思考,表达和交流的能力,并且在以直观操作的基础上,将直观与简单推理相结合,注意学生推理意识的建立和对推理过程的理解,能运用自己的方式有条理的表达推理过程,为以后的证明打下基础。
学情分析
学生通过前面的学习已了解了图形的全等的概念及特征,掌握了全等图形的对应边、对应角的关系,这为探究三角形全等的条件做好了知识上的准备。另外,学生也具备了利用已知条件作三角形的基本作图能力,这使学生能主动参与本节课的操作、探究成为可能。
教学目标
(1)学生在教师引导下,积极主动地经历探索三角形全等的条件的过程,体会利用操作、归纳获得数学结论的过程。
(2)掌握三角形全等的“边边边”、“边角边”、“角边角”、“角角边”的判定方法,了解三角形的稳定性,能用三角形的全等解决一些实际问题。
(3)培养学生的空间观念,推理能力,发展有条理地表达能力,积累数学活动经验。
教学重点和难点
重点:三角形全等条件的探索过程是本节课的重点。
从设置情景提出问题,到动手操作,交流,直至归纳得出结论,整个过程学生不仅得到了两个三角形全等的条件,更重要得是经历了知识的形成过程,体会了一种分析问题的方法,积累了数学活动经验,这将有利于学生更好的理解数学,应用数学。
难点:三角形全等条件的探索过程,特别是创设出问题后,学生面对开放性问题,要做出全面、正确得分析,并对各种情况进行讨论,对初一学生有一定的难度。
根据初一学生年龄、生理及心理特征,还不具备独立系统地推理论证几何问题的能力,思维受到一定的局限,考虑问题不够全面,因此要充分发挥教师的主导作用,适时 点拨、引导,尽可能调动所有学生的积极性、主动性参与到合作探讨中来,使学生在与他人的合作交流中获取新知,并使个性思维得以发展。
教学过程
一、回顾概念整合知识以提问的方式引出本节课的教学内容:
问题1通过调查你对商品的标价、售价、进价和利润、利润率这些概念清楚了吗?你能列出它们之间的关系式吗?
(学生板书写出三个基本关系式)
教师引导得出变形关系式:利润=进价 × 利润率.
设计意图通过调查使学生对商品销售过程所涉及的基本量、基本关系式有初步的了解,为后续的学习作好铺垫.
二、强化练习巩固概念
问题2运用基本关系式来做一组练习.
1.如果足球的进价是每个a元,超市按进价提高30%后标价,则标价是多少元?
2.如果足球的进价是每个a元,标价是每个150元,现7折优惠,则每个足球的利润是多少元?
3.如果足球的进价是每个a元,卖出后盈利25%,则每个足球的利润是多少?
4.如果足球的进价是每个a元,卖出后亏损25%,则每个足球的利润是多少?
设计意图通过题组练习使学生熟练掌握进价、标价、利润、利润率之间的关系,进而促使学生理解概念.
三、实践应用合作交流
问题3解决调查编写的商品销售方面的有关问题.
设计意图通过让学生编题互问互检,学生间的相互评价,拓展学生思维,给学生创造一个合作交流和表现发挥的舞台,让学生充分体验成功后的喜悦.
四、联系实际探究新知
问题4某商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?
教师在学生独立思考几分钟后让学生估算并简单说出估算的理由,估算对否不给予评判,告诉学生估算对不对还要进行计算. 如何计算学生先独立思考,然后同桌交流,最后请一名同学到黑板板演利用一元一次方程解决此实际问题全部过程,其他同学在底下完成. 完成后同学间相互评价. 最后教师指出解决问题的关键——寻找等量关系,教师再进一步用估算方法分析亏损的原因.
设计意图在学生基本掌握解决有关商品销售问题的基础上对所学内容进行拓展,延伸. 设计开放性问题的目的是通过本题的讲解使学生灵活运用本节的知识解决生活中的实际问题,也使全体学生在获得必要发展的前题下,不同的学生获得不同的体验.
五、巩固练习当堂反馈
问题5若某商品因库存积压,准备打折出售,如果按定价的7.5折出售将赔25元,而按定价的9折出售将赚20元. 该商品定价是多少元?
(同学们思考后各自独立完成,然后同学互判)设计意图本节课对学生来说是一个难点,因此设计反馈这一环节很有必要,便于教师掌握学生学习的情况.
六、布置作业课后延伸
设计意图加深学生对知识的巩固;是课堂教学内容的延
全等三角形教案11
教学目标
一、知识与技能
1、了解全等形和全等三角形的概念,掌握全等三角形的性质。
2、能正确表示两个全等三角形,能找出全等三角形的对应元素。
二、过程与方法
通过观察、拼图以及三角形的*移、旋转和翻折等活动,来感知两个三角形全等,以及全等三角形的性质。
三、情感态度与价值观
通过全等形和全等三角形的学习,认识和熟悉生活中的全等图形,认识生活和数学的关系,激发学生学习数学的兴趣。
教学重点
1、全等三角形的性质。
2、在通过观察、实际操作来感知全等形和全等三角形的基础上,形成理性认识,理解并掌握全等三角形的对应边相等,对应角相等。 教学难点 正确寻找全等三角形的对应元素。
教学关键
通过拼图、对三角形进行*移、旋转、翻折等活动,让学生在动手操作的过程中,感知全等三角形图形变换中的对应元素的变化规律,以寻找全等三角形的对应点、对应边、对应角。
课前准备: 教师——————课件、三角板、一对全等三角形硬纸版学生——————白纸一张、硬纸三角形一个
教学过程设计
一、全等形和全等三角形的概念
(一)导课:
教师————(演示课件)庐山风景,以诗“横看成岭侧成峰,远近高低各不同,不识庐山真面目,只缘身在此山中”指出大自然中庐山的唯一性,但是我们可以通过摄影把庐山的美景拍下来,可以洗出千万张一模一样的庐山相片。
(二)全等形的定义
象这样的图片,形状和大小都相同。你还能说一说自己身边还有哪些形状和大小都相同的图形吗?[学生举例,集体评析]
动手操作1———在白纸上任意撕一个图形,观察这个图形和纸上的空心部分的图形有什么关系?你怎么知道的? [板书:能够完全重合]
命名:给这样的图形起个名称————全等形。[板书:全等形]
刚才大家所举的各种各样的形状大小都相同的图形,放在一起也能够完全重合,这样的图形也都是全等形。
(三)全等三角形的定义
动手操作2———制作一个和自己手里的三角形能够完全重合的三角形。 定义全等三角形:能够完全重合的两个三角形,叫全等三角形。
(四)出示学习目标
1、 知道什么是全等形,什么是全等三角形。
2、 能够找出全等三角形的对应元素。
3、会正确表示两个全等三角形。
4、掌握全等三角形的性质。
二、全等三角形的对应元素及表示
(一)自学课本:第1节内容(时间5分钟)可以在小组内交流。
(二)检测:
1、动手操作
以课本P91页的思考的操作步骤,抽三个学生上黑板完成(即把三角形*移、翻折、旋转后得到新的三角形)
思考:把三角形*移、翻折、旋转后,什么发生了变化,什么没有变?
归纳:旋转前后的两个三角形,位置变化了,但形状大小都没有变,它们依然全等。
2、全等三角形中的对应元素
(以黑板上的图形为例,图一、图二、三学生独立找,集体交流)
(1)对应的顶点(三个)———重合的顶点
(2)对应边(三条)———重合的边
(3)对应角(三个)——— 重合的角
归纳:
方法一:全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;
方法二:全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角。 另外:有公共边的,公共边一定是对应边;有对顶角的,对顶角一定是对应角。
3、用符号表示全等三角形
抽学生表示图一、图二、三的全等三角形。
4、全等三角形的性质
思考:全等三角形的对应边、对应角有什么关系?为什么?
归纳:全等三角形的对应边相等、对应角相等。
请写出*移、翻折后两个全等三角形中相等的角,相等的边。
全等三角形教案12
【教学目标】
1.使学生理 解边边边公理的 内容,能运用边边边公理证明三角形全等,为证明线段相等或角相等创造条件;
2.继续培养学生画图、实 验,发现新知识的能力.
【重点难点】
1.难点:让学生掌握边边边 公理的内容和运用公理 的自觉性;
2.重点:灵活运用SSS判定两个三角形是否全等.
【教学过程 】
一、创设问题情境,引入新课
请问同学,老师在黑板上画得两个三角形,△ ABC与△ 全等吗? 你是如何判定的.
(同学们各抒己见,如:动手用纸剪下一个三角形,剪下叠到另一个三角形上,是否完全重合;测量两个三角形的所有边与角,观 察是否有三条边对应相等,三个角对应相等.)
上一节课我们已经探讨了两个三角形只满足一个或两个边、角对应相等条件时,两个三角形不一定全
等.满足三个条件时,两个三 角形是否全等呢?现在,我们就一起来探讨研究.
二、实践探索,总结规律
1、问题1:如果两个三角形的三条边分别相等,那么这两个三角形会全等吗?做一做:给你三条线段 ,分别为 ,你能画出这个三角形吗?
先请几位同学说说画图思路后,教师指导,同学们动手画,教师演示并叙述书写出步骤.
步骤:
(1)画一线段AB使 它的长度等于c(4.8cm).
(2)以点A为圆心,以线段b(3cm)的长为半径画圆弧;以点B为圆心,以线段a(4cm)的长为半径画圆弧;两弧交于点C.
(3)连结AC、BC.
△ABC即为所求
把你画的三角形与其他同学的图形叠合在一起,你们会发现什么?
换三条线段,再试试看,是否有同样的 结论
请你结合画图、对比,说说你发现了什么?
同学们各抒己见,教师总结:给定三条线段,如果它们能组 成三角形,那么所画的三角形都是全等的. 这样我们就得到判定三角形全等的一种简便 的方法: 如果两个三角形的 三 条边分别对应相等,那么这两个三角形全等.简写为边边边,或简记为(S.S.S.).
2、问题2:你能用 相似三角形的判定法解释这个(SSS)三角形全等的判定法吗?
(我们已经知道,三条边对应成比例的两个三角形相似,而相似比为1时,三条边就分别对应相等了,这两个三角形不但形状相同,而且大小都一样,即为全等三角形.)
3、问题3、你用这个SSS三角形全等的判定法解释三角形具有稳定性吗?
(只要三角形三边的长度确定了,这个三角形的形状和大小就完全确定了)
4、范例:
例1 如图19.2.2,四边形ABCD中,AD=BC,AB=DC,试说明△ABC≌△CDA. 解:已知 AD=BC,AB=DC , 又因为AC是公共边,由(S.S.S.)全等判定法,可知 △ABC≌△CDA
5、练习:
6、试一试:已知一个三角形的三个内 角分别为 、 、 ,你能画出这个三角形吗?把你画的三角形与同伴画的进行比较,你发现了什么?
(所画出的三角形都是相似的 ,但大小不一定相 同).
三个对应角相等的两个三角形不一定全等.
三、加强练习,巩固知识
1、如图, , ,△ABC≌△DCB全等吗?为什么?
2、如图,AD是△ABC的中线, . 与 相等吗?请说明理由.
四、小结
本节课探讨出可用(SSS)来判定两个三角形全等,并能灵活运用( SSS )来判定三角形全等.三个角对应相等的两个三角不一定会全等.
五、作业
全等三角形教案13
一、教材分析
本节课的教学内容是人教版数学八年级上册第十一章 《全等三角形》的第一节.这是全章的开篇,也是全等条件的基础.它是继线段、角、相交线与*行线及三角形有关知识之后出现的通过本节的学习,可以丰富和加深学生对已学图形的认识,同时为学习其他图形知识打好基础,具有承上启下的作用.
教材根据初中学生的认知规律和特点,采用由浅入深、由易到难、抓联系、促迁移的方法.通过生活中的实例创设情景,形成概念,再通过*移、翻折、旋转说明变换前后的两个三角形全等,进而得出全等三角形的相关概念及其性质.
二、教学目标分析
知识与技能
1.了解全等三角形的概念,通过动手操作,体会*移、翻折、旋转是考察两三角形全等的主要方法.
2.能准确确定全等三角形的对应元素.
3.掌握全等三角形的性质.
过程与方法
1.通过找出全等三角形的对应元素,培养学生的识图能力.
2.能利用全等三角形的概念、性质解决简单的数学问题.
情感、态度与价值观
通过构建和谐的课堂教学氛围,激发学生的学习兴趣,调动学生的学习积极性,使学生勇于提出问题,乐于探索问题,同时注重培养学生善于合作交流的良好情感和积极向上的学习态度.
三、教学重点、难点
重点:全等三角形的概念、性质及对应元素的确定.
难点:全等三角形对应元素的确定.
四、学情分析
学生在七年级时已经学过线段、角、相交线与*行线及三角形的有关知识,并学习了一些简单的说理,已初步具有对简单图形的分析和辨识能力,但八年级的学生仍处于以形象思维为主要思维形式的时期.为了发展学生的空间观念,培养学生的抽象思维能力,本节课将充分利用动画演示,来揭示图形的*移、翻折和旋转等变换过程,以便让学生在观察、分析中获得大量的感性认识,进而达到对全等三角形的理性认识.
五、教法与学法
本节课坚持“教与学、知识与能力的辩证统一”和“人人都能获得必需的数学”的原则,博采启发教学法、引探教学法、讲授教学法等诸多方法之长,借助多媒体手段引导学生观察、猜想和探究,促进学生自主学习,努力做到教与学的最优组合.
六、教学教程
Ⅰ.课题引入
1.电脑显示
问题:各组图形的形状与大小有什么特点?
一般学生都能发现这两个图形是完全重合的。
归纳:能够完全重合的两个图形叫做全等形。
2.学生动手操作
⑴在纸板上任意画一个三角形ABC,并剪下,然后说出三角形的三个角、三条边和每个角的对边、每个边的对角。
⑵问题:如何在另一张纸板再剪一个三角形DEF,使它与△ABC全等?
(学生分组讨论、提出方法、动手操作)
3.板书课题:全等三角形
定义:能够完全重合的两个三角形叫做全等三角形
“全等”用“≌”表示,读着“全等于”
如图中的两个三角形全等,记作:△ABC≌△DEF
Ⅱ.全等三角形中的对应元素
1. 问题:你手中的两个三角形是全等的,但是如果任意摆放能重合吗?该怎样做它们才能重合呢?
2.学生讨论、交流、归纳得出:
⑴.两个全等三角形任意摆放时,并不一定能完全重合,只有当把相同的角重合到一起(或相同的边重合到一起)时它们才能完全重合。这时我们把重合在一起的顶点、角、边分别称为对应顶点、对应角、对应边。
⑵.表示两个全等三角形时,通常把表示对应顶点字母写在对应的位置上,这样便于确定两个三角形的对应关系。
Ⅲ. 全等三角形的性质
1.观察与思考:
寻找甲图中两三角形的对应元素,它们的对应边
有什么关系?对应角呢?
(引导学生从全等三角形可以完全重合出发找等量关系)
全等三角形的性质:
全等三角形的对应边相等.
全等三角形的对应角相等.
2.用几何语言表示全等三角形的性质
如图:∵ABC≌ DEF
∴AB=DE,AC=DF,BC=EF
(全等三角形对应边相等)
∠A=∠D,∠B=∠E,∠C=∠F
(全等三角形对应角相等)
Ⅳ.探求全等三角形对应元素的找法
1.动画(几何画板)演示
(1).图中的各对三角形是全等三角形,怎样改变其中一个三角形的位置,使它能与另一个三角形完全重合?
归纳:两个全等的三角形经过一定的转换可以重合.一般是*移、翻折、旋转的方法.
(2).说出每个图中各对全等三角形的对应边、对应角
归纳:从运动的角度可以很轻松地解决找对应元素的问题.可见图形转换的奇妙.
3. 归纳:找对应元素的常用方法有两种:
(1)从运动角度看
a.翻折法:一个三角形沿某条直线翻折与另一个三角形重合,从而发现对应元素.
b.旋转法:三角形绕某一点旋转一定角度能与另一三角形重合,从而发现对应元素.
c.*移法:沿某一方向推移使两三角形重合来找对应元素.
(2)根据位置元素来推理
a.有公共边的,公共边是对应边;
b.有公共角的,公共角是对应角;
c.有对顶角的,对顶角是对应角;
d.两个全等三角形最大的边是对应边,最小的边也是对应边;
e.两个全等三角形最大的角是对应角,最小的角也是对应角;
Ⅴ.课堂练习
练习1.△ABD≌△ACE,若∠B=25°, BD=6㎝,AD=4㎝,
你能得出△ACE中哪些角的大小,哪些边的长度吗?为什么 ?
练习2.△ABC≌△FED
⑴写出图中相等的线段,相等的角;
⑵图中线段除相等外,还有什么关系吗?请与同伴交
流并写出来.
Ⅵ.小结
1.这节课你学会了什么?有哪些收获?有什么感受?
2.通过本节课学习,我们了解了全等的概念,发现了全等三角形的性质,并且利用一些方法可以找到两个全等三角形的对应元素.这也是这节课大家要重点掌握的
Ⅶ.作业
课本第92页1、2、3题
全等三角形教案14
教材分析:
《三角形全等复习课内容》选用义务教育课程标准实验教材《数学》(华师大版)九年级上册,三角形全等是初中数学中重要的学习内容之一。本套教材把三角形全等看作是三角形相似的特殊情况,同时三角形全等的概念,三角形全等的识别方法,与命题与证明,尺规作图几部分内容相互联系紧密,尤其是尺规作图中作法的合理性和正确性的解释依赖于全等知识。本章中三角形全等的识别方法的给出都通过学生画图、讨论、交流、比较得出,注重学生实际操作能力,为培养学生参与意识和创新意识提供了机会。
设计理念:
针对教材内容和初三学生的实际情况,组织学生通过摆拼全等三角形和探求全等三角形的活动,让学生感悟到图形全等与*移、旋转、对称之间的关系,并通过学生动手操作,让学生掌握全等三角形的一些基本形式,在探求全等三角形的过程中,做到有的放矢。然后利用角*分线为对称轴来画全等三角形的方法来解决实际问题,从而达到会辨、会找、会用全等三角形知识的目的。
教学目标:
1、通过全等三角形的概念和识别方法的复习,让学生体会辨别、探寻、运用全等三角形的一般方法,体会主动实验,探究新知的方法。
2、培养学生观察和理解能力,几何语言的叙述能力及运用全等知识解决实际问题的能力。
3、在学生操作过程中,激发学生学习的兴趣,培养学生主动探索,敢于实践的精神,培养学生之间合作交流的习惯。
教学的重点和难点:
重点:运用全等三角形的识别方法来探寻三角形以及运用全等三角形的知识解决实际问题。
难点:运用全等三角形知识来解决实际问题。
教学过程设计:
一、创设问题情境:
某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块形状完全相同的玻璃,那么你认为它应保留哪一块?(教师用多媒体)
师:请同学们先独立思考,然后小组交流意见
生:…………
师:上述问题实质是判断三角形全等需要什么条件的问题。
今天我们这节课来复习全等三角形。(引出课题)。
师:识别三角形及等的方法有哪些?
生:SAS 、 SSS、 ASA、 AAS 、 HL。
复习回顾:练习1、将两根钢条AA/、BB/中点O连在一起,使AA/、BB/绕着点O自由转动,做成一个测量工具,则A/B/的长等于内槽宽AB,判定△OAB≌△OA/B/现由( )
练习2、已知AB//DE,且AB=DE,
(1)请你只添加一个条件,使△ABC≌△DEF,
你添加的条件是
(2)添加条件后,证明△ABC≌△DEF?
[根据不同的添加条件,要求学生能够叙述三角形全等的条件和全等的现由,鼓励学生大胆的表述意见]
二、探求新知:
师:请同学们将两张纸叠起来,剪下两个全等三角形,然后将叠合的两个三角形纸片放在桌面上,从*移、旋转、对称几个方面进行摆放,看看两个三角形有一些怎样的特殊位置关系?
请同组合作,交流,并把有代表性的摆放进行投影。
熟记全等三角形的基本形式,为探求全等三角形打下基础,提醒学生注意两个全等三角形的对应边和对应角。学生的摆放形式很多,包括那些*时数学成绩不好的学生也跃跃欲试,教师给予肯定和鼓励激发他们学习的积极性和主动性。
例1、一张矩形纸片沿着对角线剪开,得到两张三角形纸片ABC、DEF,再将这两张三角形纸片摆成右图的形式,使点B、F、C、D处在同一条直线上,P、M、N为其他直线的交点。
(1)求证:AB⊥ED
(2)若PB=BC,请找出右图中全等三角形,并给予证明。
用多媒体演示图形的变化过程。
师:图3中AB与ED有怎样的位置关系?同学生猜想一下结果。
生甲:AB垂直ED
师:为什么?可以从几方面来考虑?
生乙:可以从图形运动变化的过程来考虑
生丙:可以考虑全等在已知条件下,显然有△ABC≌△DEF,故∠A=∠D,又∠ANP=∠DNC,所以,∠APN=∠DCN=900,即AB⊥ED。
(根据学生的回答,教师板演)
师:若PB=BC,找出右图中全等三角形,看看谁能找得最快?
生丁:△PBD≌△CBA(ASA)
师:板演,由AB⊥ED,可得到∠BPD=900,∠BPD=∠CBA,∠A=∠D,PB=BC,故有△PBD≌△CBA(ASA)。
师:还有其他三角形全等吗?
生:有,我连接BN,由勾股定理得PN=CN,就不难得到△APN≌△DCN。
(在错综复杂的图形中寻找全等三角形是一件不容易的事,要鼓励学生大胆的猜想,努力探求,在学生的叙述过程中,教师及时纠正学生叙述中的错误,训练学生严谨的学习态度和学习习惯。)
例2、(动手画)(1)已知OP为∠AOB*分线,请你利用该图画一对以OP所在直线为对称轴的全等三角形。
教师在黑板上画好∠AOB和直线OP,学生独立思考,然后请几个学生在黑板上演示。
师生总结:想要画出符合条件的三角形,只要在射线OA、OB上找到一对关于OP对称的点就可以了。
(2)利用上图作全等三角形方法,在△ABC中,∠B=600,∠ABC是直角,AD、CE是∠BAC,∠DCA的*分线,AD、CE相交于F,请判断FE与FD间数量关系。
师:请同学们用三角尺和量角器准确画出此图,然后量出EF、FD的长度,看看EF与FD长度
关系如何?
生:基本相等。
生:长度相等。
师:如何来证明他们相等?注意审题。
学生先独立思考后,组内交流,等到有同学举手发言。
生:在AC上取点H,使AH=AE,则△AEF≌△AHF则EF=FH
师:为什么要这么做?你是怎么想到的?
生:因为要证明线段相等要考虑三角形全等,而EF、FD所在两个三角形显然不全等,又AD是*分线,在AC上找出E关于AD有对称点H得到△AEF≌△AHF。
师:这样只能得到EF=FH。
生:再证明△FHC≌△FDC。
生:先求出AD、CE是角*分线∠APC=1200,则∠DPC=∠EPA=∠APH=600,所以∠HPC=
∠DPC=600,PC=PC,∠3=∠4,因为△HCP≌△DCP(ASA)所以PD=PH。
(看清题意,猜想结果是解决探究题的重要环节,教师要留给学生一定思考时间,同时鼓励学生尝试和交流,鼓励学生勇于探索以及同学之间的合作。)
师生共同小结:
1、熟记全等三角形的基本形态,会找全等三角形的对应边和对应角。
2、在错综复杂的几何图形中能够寻找全等三角形。
3、利用角*分线的对称性构造三角形全等,并利用三角形的全等性质解决线段之间的等量关系。
4、运用全等三角形的识别法可以解决很多生活实际问题。
作业:
1、在例2中,如果∠ACB不是直角,而(1)中的其他条件不变,请问:你在(1)中所得结论能成立吗?若成立,请证明,若不成立,请说明理由。
2、书本课后复习题
教学反思:
本教学设计从以下三方面考虑:
1、根据学生的学习情况,改进学生的学习方式,强调合作交流,探索学习,教师在教学过程中,努力为学生创设自主探索的氛围,让学生真正成为课堂主体。
2、重视对学生能力的培养,除常规的鼓励就大胆思考,积极发言,重视培养学生观察、操作、测试、思考的能力,学生的活跃,他们思考问题的方式是多种多样,教师从对完全更改,尊重他们的学习方式,这样有助于创新
3、重视对学生学习习惯的培养,全等三角形是几何部分内容说明书,有较强逻辑性,教师板演,以及在学生叙述中纠正学生的错误,是培养学生养成良好的习惯之一,同时学生学习习惯多方面的,在合作交流中,培养学生合作意识和合作习惯培养显得尤为重要。
全等三角形教案15
教学目标:
1、知识目标:
(1)掌握已知三边画三角形的方法;
(2)掌握边边边公理,能用边边边公理证明两个三角形全等;
(3)会添加较明显的辅助线.
2、能力目标:
(1)通过尺规作图使学生得到技能的训练;
(2)通过公理的初步应用,初步培养学生的逻辑推理能力.
3、情感目标:
(1)在公理的形成过程中渗透:实验、观察、归纳;
(2)通过变式训练,培养学生“举一反三”的学习习惯.
教学重点:SSS公理、灵活地应用学过的各种判定方法判定三角形全等。
教学难点:如何根据题目条件和求证的结论,灵活地选择四种判定方法中最适当的方法判定两个三角形全等。
教学用具:直尺,微机
教学方法:自学辅导
教学过程:
1、新课引入
投影显示
问题:有一块三角形玻璃窗户破碎了,要去配一块新的,你最少要对窗框测量哪几个数据?如果你手头没有测量角度的仪器,只有尺子,你能保证新配的玻璃恰好不大不小吗?
这个问题让学生议论后回答,他们的答案或许只是一种感觉。于是教师要引导学生,抓住问题的本质:三角形的三个元素――三条边。
2、公理的获得
问:通过上面问题的分析,满足什么条件的两个三角形全等?
让学生粗略地概括出边边边的公理。然后和学生一起画图做实验,根据三角形全等定义对公理进行验证。(这里用尺规画图法)
公理:有三边对应相等的两个三角形全等。
应用格式: (略)
强调说明:
(1)、格式要求:先指出在哪两个三角形中证全等;再按公理顺序列出三个条件,并用括号把它们括在一起;写出结论。
(2)、在应用时,怎样寻找已知条件:已知条件包含两部分,一是已知中给出的,二时图形中隐含的(如公共边)
(3)、此公理与前面学过的公理区别与联系
(4)、三角形的稳定性:演示三角形的稳定性与四边形的不稳定性。在演示中,其实可以去掉组成三角形的一根小木条,以显示三角形条件不可减少,这也为下面总结“三角形全等需要有3全独立的条件”做好了准备,进行了沟通。
(5)说明AAA与SSA不能判定三角形全等。
3、公理的应用
(1) 讲解例1。学生分析完成,教师注重完成后的点评。
例1 如图△ABC是一个钢架,AB=ACAD是连接点A与BC中点D的支架
求证:AD⊥BC
分析:(设问程序)
(1)要证AD⊥BC只要证什么?
(2)要证∠1= 只要证什么?
(3)要证∠1=∠2只要证什么?
(4)△ABD和△ACD全等的条件具备吗?依据是什么?
证明:(略)
(2)讲解例2(投影例2 )
例2已知:如图AB=DC,AD=BC
求证:∠A=∠C
(1)学生思考、分析、讨论,教师巡视,适当参与讨论。
(2)找学生代表口述证明思路。
思路1:连接BD(如图)
证△ABD≌△CDB(SSS)先得∠A=∠C
思路2:连接AC证△ABC≌CDA(SSS)先得∠1=∠2,∠3=∠4再由∠1+∠4=∠2+∠3得∠BAD=∠BCD
(3)教师共同讨论后,说明思路1较优,让学生用思路1在练习本上写出证明,一名学生板书,教师强调解题格式:在“证明”二字的后面,先将所作的辅助线写出,再证明。
例3如图,已知AB=AC,DB=DC
(1)若E、F、G、H分别是各边的中点,求证:EH=FG
(2)若AD、BC连接交于点P,问AD、BC有何关系?证明你的结论。
学生思考、分析,适当点拨,找学生代表口述证明思路
让学生在练习本上写出证明,然后选择投影显示。
证明:(略)
说明:证直线垂直可证两直线夹角等于 ,而由两邻补角相等证两直线的夹角等于 ,又是很重要的一种方法。
例4 如图,已知:△ABC中,BC=2AB,AD、AE分别是△ABC、△ABD的中线,
求证:AC=2AE.
证明:(略)
学生口述证明思路,教师强调说明:“中线”条件下的常规作辅助线法。
5、课堂小结:
(1)判定三角形全等的方法:3个公理1个推论(SAS、ASA、AAS、SSS)
在这些方法中,每一个都需要3个条件,3个条件中都至少包含条边。
(2)三种方法的综合运用
让学生自由表述,其它学生补充,自己将知识系统化,以自己的方式进行建构。
6、布置作业:
a、书面作业P70#11、12
b、上交作业P70#14 P71B组3
小班主题三角形教案3篇(扩展3)
——拼三角形教案
拼三角形教案1
活动目标:
1.在操作中体验图形整体与部分之间的关系。
2.能用几个小三角形拼成一个大三角形。
3.对图形之间的拼组关系感兴趣。
活动准备:
1.教师演示用的大三角形纸卡:红色两个,绿色,蓝色个一个。
2.幼儿用的红色三角形纸卡每人一个,幼儿剪刀每人一把。
3.幼儿用书。
活动过程:
一:三角形一次分割练习,理解图形整体与部分之间的关系。
1、 出示红色大三角形。
教师:这是什么图形?它是什么颜色的?
2、取一个红颜色的大三角形,教师演示。
教师:三角形会变魔术,你们相信吗?
教师:你们看,一个大三角形变成了什么?
3、再取一个红颜色的大三角形,教师演示。
教师:它们还可以怎么变呢?
教师:你们看,一个大三角形变成了什么?
4、请幼儿折一折,剪一剪,再拼一拼。
教师 :请你们每人取一个红色的三角形,折一折,剪一剪,让它变一变魔术把!再把剪下来的图形拼一拼,看还能不能拼成原来的形状。
二:三角形两次分割演示。
1、 教师:你们还想看三角形变魔术吗?教师把绿色的纸卡折两下,并沿折线剪下来。
2、 教师:再将小图形拼一拼,看还能不能拼成原来的形状。
三:三角形三次分割演示。
1、教师把蓝色的纸卡折三次 ,(三条折线不交叉)或这两次(两条折线交叉) 请幼儿数一数共分成了几部分(四部分),都是什么形状的(至少有一个三角形)
2、教师:再将小图形拼一拼看还能不能拼成原来的形状。
四:打开幼儿用书,完成操作练习。
1、调动幼儿操作的愿望和兴趣。
2、教师帮助幼儿理解操作的要求,并指导帮助能力差的幼儿。
3、幼儿之间相互检查,交流讨论。
小班主题三角形教案3篇(扩展4)
——《三角形的内角和》教案10篇
《三角形的内角和》教案1
本节微课视频是苏教版数学教科书四年级下册第78~79页的教学内容。在教学之前,学生已经掌握了角的概念、角的分类和角的测量;认识了三角形,知道三角形是由三条线段首尾相接围成的图形,有三个顶点、三条边和三个角。这些已经构成学生进一步学习的认知基础。《三角形的内角和》是三角形的一个重要性质。学生在学习四年级上册“角的度量”时,通过测量三角尺三个角的度数,知道三角尺三个角加起来的和是180度,再加上课前的预习,大部分的学生已经能得出结论:三角形的内角和是180度,只不过他们不清楚其中的道理,只是机械性的记忆。因此,本节课的重点不是结论,而是验证结论的过程。教材组织学生对不同形状、不同大小的三角形的内角和进行探索,通过转化、推理、比较、操作和验证,总结概括出“所有三角形的内角和都是180度”的规律,从而进一步发展学生的空间观念,提高学生的自主学习能力和推理能力。
下面就具体谈谈微课的教学设计:
一、 教学目标
1、通过测量、转化、观察和比较等活动探索发现并验证“三角形的内角和是180度”的规律,并且能利用这一结论解决求三角形中未知角的度数等实际问题。
2、通过折一折、拼一拼和剪一剪等一系列的操作活动培养学生的联想意识和动手操作能力。体验验证结论的过程与方法,提高学生分析和解决问题的能力。
3、使学生通过操作的过程获得发现规律的喜悦,获得成就感,从而激发学生积极主动学习数学的兴趣。
二、 教学重点和难点
重点:让学生亲自验证并总结出三角形的内角和是180度的结论
难点:对不同验证方法的理解和掌握。
三、 教学过程
(一)质疑——发现问题,提出问题
出示学生熟悉的一副三角尺,让学生说说每块三角尺中各个内角的度数。试着计算每块三角尺的三个内角的度数加起来的和是多少度?
交流:不同三角尺的内角和都是一样的吗?三角尺的内角和有什么特征?
引导学生得出三角尺的三个内角的度数和是180度。
提问:三角尺的形状是什么三角形?三角尺的内角和是180度,我们还可以说成是什么?(得出结论:直角三角形的内角和是180度。)
你有什么办法验证这一结论呢?(动手操作,寻找答案)
方法一:拿出不同的直角三角形,分别测量三个内角的度数,再求和。(提示存在误差,但三个内角的和都在180度左右)
方法二:用两个相同的直角三角形拼成一个长方形,由于长方形的四个内角和是360度,因此能得出一个直角三角形的三个内角和是180度。
启发:直角三角形的内角和是180度,这一结论让你联想到了什么?你能提出什么新的数学问题呢?
引导:从直角三角形的内角和联想到所有三角形的内角和,提出问题:所有三角形的内角和都是180度吗?
(二)探究——分析问题,解决问题
出示三个三角形:直角三角形、锐角三角形和钝角三角形。
引导:直角三角形的内角和是180度了,由此我们联想到锐角三角形和钝角三角形的内角和也有可能是180度。
提问:你有什么办法来验证这一猜想呢?
拿出事先从课本第113页剪下来的3个三角形,动手操作,自主探索,发现规律。
方法一:可以像上面那样先测量每个三角形的三个内角的度数,再计算出它们的和,看看能发现什么规律。学生测量计算,教师巡视指导。
引导:测量时要尽量做到准确,测量是存在误差的,对于测量的不准的同学要重新测定和确认,计算出它们的和,发现其中的规律。
方法二:既然是求三角形的内角和,我们就可以想办法把三角形的3个内角拼在一起,看看拼成了什么角。那怎样才能把3个内角拼在一起呢?我们可以将三角形中的3个内角撕下来,再拼在一起,会发现拼成了一个*角,是180度。
方法三:把三角形的三个内角撕下来,虽然能将他们拼在一起,但是原有的三角形被破坏了。因此,我们还可以通过折一折的方法,把三个内角折过来拼在一起,同样会发现拼成一个*角,是180度。
方法四:将锐角三角形和钝角三角形分别分成两个直角三角形,利用直角三角形内角和是180度进行推理。180+180=360度,360-90-90=180度。
(三)归纳——获得结论
交流:回顾以上3个三角形的内角和的探索过程,你发现了什么规律?
总结:通过测量计算、拼一拼和折一折的方法,我们可以消除心中的问号,肯定得说出所有三角形的内角和都是180度这一结论。
(四)拓展——巩固练习
1、将一个大三角形剪成两个小三角形,每个小三角形的内角和是多少度?
2、在一个三角形中,根据两个内角的度数,求第三个内角的度数?
《三角形的内角和》教案2
教学目标:
1、让学生亲自动手,通过量、剪、拼等活动,发现并证实三角形的内角和是180°,应用三角形内角和的知识解决实际问题。
2、让学生在动手获取知识的过程中,培养学生的创新意识,探索精神和实践能力。
重点、难点:
经历“三角形内角和是180°”这一知识的形成,发展和应用的全过程。
三角形内角和是180°的探索和验证。
教学过程:
一、揭示课题
1、今天我们一起来学习三角形的内角和,那什么是三角形的内角和?(三角形里面的角),它有几个内角?(三个)出示纸片,那什么又是三角形的内角和呢?(把三角形的三个角的度数加起来就是三角形的内角和)
出示课件
2、提出问题,为后面做铺垫。
现在有3个三角形(出示课件),直角三角形说:“我是直角三角形,我的内角和最大”钝角三角形说:“我有一个钝角,比你们三个角都大,所以我的内角和才是最大的。锐角三角形说:“我虽然是锐角三角形,但我的个头最大,所以我的内角和才是最大的。
孩子们,它们这样吵起来可不是办法呀!你们可知道它们谁的内角和最大呢?那我们就一起来证明给他们看。
二、新授
1、任意画不同的类型的三角形,算一算三个内角和是多少度。我们就画三个不同类型的三角形,算一算三个内角和是多少度,我们有三大组,为了节约时间,每一大组画一种又分几小组,三人一小组,一人画,一人量,一人记录。(小组合作,画图,量角,记录,计算)
指名汇报结果并板书(至少一种一个板书),有不同意见的举手,相差1、2度很正常,量角会有误差(你们完成的又快又好,因此可见小组合作很到位)
师出示一个大直角三角板,请大家算一算这个三角板的内角和是多少?
(三角形的内角和都是一样大的,都是180°,仅仅一个实验还不能让它们心服口服,下面我们再来做两个实验,让它们心服口服)
1、拼一拼,折一折
孩子们,我们又活动起来吧,拼一拼折一折,让它们看一看,拿出你们准备好的三角形。我们一起来:拿出一个三角形(不管形状),撕下三个角,然后拼在一起(注意三个角的顶点要在同一个点上)你们发现了什么?(拼成了一个*角,这一点就是*角的顶点)
我们再拿出一个三角形,折一折(注意科学的严谨性,折的时候不留很宽的缝隙)你又发现了什么?(这个三角形还是组成了一个*角)
通过这三次实验,我们可以得出结论:三角形的内角和等于180°,不分形状,不分大小,任何一个三角形的内角和都是180°
此时,这三个三角形还争吵吗?它们都心服口服了。
孩子们,你们真了不起,轻而易举就*息了一场争吵。现在你能不能利用所学知识解决一些问题呢?
三、练习
1、抢答游戏(答对的给你的那一小组加一分)
①
这个三角形的内角和是多少度。
②
把这个三角形*均分成两个小三角形,每个小三角形是多少度。
③
这个小三角形再分成一大一小两个三角形,这个三角形的内角和分别是多少度?
④
三个小三角形拼成一个更大的三角形,它的内角和是多少度?
2、智慧角
3、判断(用手语表示)(哪个小组同学全部举手,就由哪个小组回答,口说手划答对加一分)
4、知识扩展
其实三角形的内角和是一个小朋友发现并提出来的,当时他只有12岁,比你们大一点点,真了不起,你们想知道他是谁吗?(帕斯卡)
出示课件
孩子们,其实你们跟他们同样聪明,以后,我们就利用所学知识去发现探索新的知识和规律,只要努力,就一定会成功的,孩子们加油吧!
四、总结
任何一个三角形不分大小,不分形状,它们的内角和都是180°
《三角形的内角和》教案3
【教学目标】
1、知识与技能:
(1)理解和掌握三角形的内角和是180°。
(2)运用三角形的内角和知识解决实际问题和拓展性问题。
2、过程与方法:
(1)通过测量、撕拼、折叠等方法,探索和发现三角形三个内角的和等于180°。
(2)知道三角形两个角的度数,能求出第三个角的度数。
(3)发展学生动手操作、观察比较和抽象概括的能力。
3、情感态度与价值观:
让学生体验数学活动的探索乐趣,通过教学中的活动体会数学的转化思想。
【教学重、难点】
教学重点:理解掌握三角形的内角和是180°。
教学难点:运用三角形的内角和知识解决实际问题。
【教具准备】
教学课件、各种三角形
【教学过程】
一、创设情景,引出问题
1、猜谜语:
形状似座山,稳定性能坚。三竿首尾连,学问不简单。
(打一图形名称)
2、猜三角形
师:老师这有1个三角形,它的一部分被智慧星给遮住了,猜猜这是什么三角形?它里面会出现两个直角吗?为什么?
3、引出课题。
师:为什么不会出现两个直角?今天我们就再次走进数学王国,探讨三角形的内角和的奥秘。(板书课题)
二、探究新知
1、三角形的内角和
师:三角形内角和指的是什么?
2、猜一猜。
师:这个三角形的内角和是多少度?
3、验证。
让学生用自己喜欢的方式验证三角形的内角和是不是180°。
4、学生汇报。
(1)测量
师:汇报的测量结果,有的是180°,有的不是180°,为什么会出现这种情况?有没有别的方法验证?
(2)剪拼
A、学生上台演示。
B、请大家三人小组合作,用剪拼的方法验证其它三角形。
C、师演示。
(3)折拼
师:有没有别的验证方法?我在电脑里收索到折的方法,请同学们看一看他是怎么折的(课件演示)。
(4)结论:三角形的内角和是180。
(5)数学小知识。
5、巩固知识。
(1)解决课前问题,为什么一个三角形不可能有两个直角?一个三角形中可以有2个钝角吗?
(2)把两个小三角形拼在一起,问:大三角形的内角和是多少度。
教师:为什么不是360°?
三、解决相关问题
师:接下来,利用三角形的内角和我们来解决一些相关的问题吧!
1、看图,求未知角的度数。
2、判断。
3、如果一个都不知道,或只知道1个角,你能知道三角形各角的度数吗?
求出下面三角形各角的度数。
(1)我三边相等。
(2)我是等腰三角形,我的顶角是96°。
(3)我有一个锐角是40°。
4、求四边形、五边形内角和。
四、总结。
师:这节课你有什么收获?
五、板书设计:(略)
《三角形的内角和》教案4
教学要求
1.通过动手操作,使学生理解并掌握三角形的内角和是180°的结论。
2.能运用三角形的内角和是180°这一规律,求三角形中未知角的度数。
3.培养学生动手动脑及分析推理能力。
教学重点 三角形的内角和是180°的规律。
教学难点 使学生理解三角形的内角和是180°这一规律。
教学用具 每个学生准备锐角三角形、直角三角形、钝角三角形纸片各一张,量角器。
教学过程:
一、复习准备
1.三角形按角的不同可以分成哪几类?
2.一个*角是多少度?1个*角等于几个直角?
3.如图,已知∠1=35°,∠2=75°,求∠3的度数。
二、教学新课
1.投影出示一组三角形:(锐角三角形、钝角三角形、直角三角形)。三角形有几个角?老师指出:三角形的这三个角,就叫做三角形的三个内角。(板书:内角)
2.三角形三个内角的度数和叫做三角形的内角和。(板书课题:三角形的内角和)今天我们一起来研究三角形的内角和有什么规律。
3.以小组为单位先画4个不同类型的三角形,利用手中的工具分别计算三角形三个内角的和各是多少度?
4.指名学生汇报各组度量和计算的结果。你有什么发现?
5.大家算出的三角形的内角和都接近180°,那么,三角形的内角和与180°究竟是怎样的关系呢?就让我们一起来动手实验研究,我们一定能弄清这个问题的。
6.刚才我们计算三角形的内角和都是先测量每个角的度数再相加的。在量每个内角度数时只要有一点误差,内角和就有误差了。我们能不能换一种方法,减少度量的次数呢?
提示学生,可以把三个内角拼成一个角,就只需测量一次了。
7.请拿出桌上的直角三角形纸片,想一想,怎样折可以把三个角拼在一起,试一试。
8.三个角拼在一起组成了一个什么角?我们可以得出什么结论?(直角三角形的内角和是180°)
9.拿一个锐角三角形纸片试试看,折的方法一样。再拿钝角三角形折折看,你发现了什么?(直角三角形和钝角三角形的内角和也是180°)
10.那么,我们能不能说所有三角形的内角和都是180°呢?为什么?(能,因为这三种三角形就包括了所有三角形)11.老师板书结论:三角形的内角和是180°。
12.一个三角形中如果知道了两个内角的度数,你能求出另一个角是多少度吗?怎样求?
13.出示教材85页做一做。让学生试做。
14.指名汇报怎样列式计算的。两种方法均可。
∠2=180°-140°-25°=15°
∠2=180°(140°+25°)=15°
三、巩固练习
1.88页第9题
这一题是不是只知道一个角的度数?另一个角是多少度,从哪看出来的?独立完成,集体订正。
直角三角形中的一个锐角还可以怎样算?
2、88页第10题
①等腰三角形有什么特点?(两底角相等)
②列式计算 180°-70°-70°=40°或
180°-(70°×2)=40°
2.88页第10题
①连接长方形、正方形一组对角顶点,把长方形、正方形分成两个什么图形?
②一个三角形的内角和是180°,两个三角形呢?
四、布置作业
《三角形的内角和》教案5
教学目标
通过猜想、验证,了解三角形的内角和是180度。在学习的过程中进一步激发学生探索数学规律的兴趣,初步感知计算多边形内角和的公式。
教学重难点
三角形的内角和
课前准备
电脑课件、学具卡片
教学活动
一、计算三角尺三个内角的和。
出示三角尺中的一个,提问:谁来说说三角尺上的三个角分别是多少度?
引导学生说出90度、60度、30度。
出示另一个三角尺,引导学生分别说出三个角的度数:90度、45度、45度。
提问:请同学们任选一个三角尺,算出他们三个角一共多少度?
学生计算后指名回答。
师:三角尺三个角的和是180度。
二、自主探索,解决问题
提问:是不是任一个三角形三个角的和都是180度呢?请同学们在自备本上
任画一个三角形,量出它们三个角分别是多少度,再求出它们的和,然后小组内交流。
学生小组活动,教师了解学生情况,个别同学加以辅导。
全班交流:让学生分别说出三个角的度数以及它们的和。
提问:你发现了什么?
:任何一个三角形三个角的和都是180度。利用三角形的这一性质,我们可以解决许多问题。
三、试一试
要求学生先计算,再用量角器量,最后比较结果是否相同?让学生说说计算的方法。
教师说明:即使结果不完全一样,是因为测量的结果存在误差,我们还是以
计算的结果为准。
四、巩固提高
完成想想做做的题目。
第1题
学生独立计算,交流算法。要求学生用量角器量出结果,和计算的结果想比较。
第2题
指导学生看图,弄清拼成的三角形的三个内角指的是哪三个角。计算三角形三个角的内角和,帮助学生进一步理解:三角形三个内角的和是180度。
第3题
通过操作、计算,使学生认识到:不管三角形的大小怎样变化,它的内角和是不会变化的。
第4、5、6
引导学生运用三角形的分类及三角形内角和的有关知识解决有关问题,重点培养学生灵活运用知识解决问题的能力。
《三角形的内角和》教案6
教学目标:
1、让学生通过观察、操作、比较、归纳,发现三角形的内角和是180。
2、让学生学会根据三角形的内角和是180 这一知识求三角形中一个未知角的度数。
3、激发学生主动参与、自主探索的意识,锻炼动手能力,发展空间观念。
教学准备:
三角板,量角器、点子图、自制的三种三角形纸片等。
教学过程:
一、提出猜想
老师取一块三角板,让学生分别说说这三个角的度数,再加一加,分别得到这样的2个算式:90+60+30=180,90+45+45=180
看了这2个算式你有什么猜想?
(三角形的三个角加起来等于180度)
二、验证猜想
1、画、量:在点子图上,分别画锐角三角形、直角三角形、钝角三角形。画好后分别量出各个角的度数,再把三个角的度数相加。
老师注意巡视和指导。交流各自加得的结果,说说你的发现。
2、折、拼:学生用自己事先剪好的图形,折一折。
指名介绍折的方法:比如折的是一个锐角三角形,可以先把它上面的一个角折下,顶点和下面的边重合,再分别把左边、右边的角往里折,三个角的顶点要重合。发现:三个角会正好在一直线上,说明它们合起来是一个*角,也就是180度。
继续用该方法折钝角三角形,得到同样的结果。
直角三角形的折法有不同吗?
通过交流使学生明白:除了用刚才的方法之外,直角三角形还可以用更简便的方法折;可以直角不动,而把两个锐角折下,正好能拼成一个直角;两个直角的度数和也是180度。
3、撕、拼:可能有个别学生对折的方法感到有困难。那么还可以用撕的方法。
在撕之前要分别在三个角上标好角1、角2和角3。然后撕下三个角,把三个角的一条边、顶点重合,也能清楚地看到三个角合起来就是一个*角180度。
小结:我们可以用多种方法,得到同样的结果:三角形的内角和是180。
4、试一试
三角形中,角1=75,角2=39,角3=( )
算一算,量一量,结果相同吗?
三、完成想想做做
1、算出下面每个三角形中未知角的度数。
在交流的时候可以分别学生说说怎么算才更方便。比如第1题,可先算40加60等于100,再用180减100等于80。第2题则先算180减110等于70,再用70减55更方便。第3题是直角三角形,可不用180去减,而用90减55更好。
指出:在计算的时候,我们可根据具体的数据选择更佳的算法。
2、一块三角尺的内角和是180 ,用两块完全一样的三角尺拼成一个三角形,这个三角形的内角和是多少度?
可先猜想:两个三角形拼在一起,会不会它的内角和变成1802=360 呢?为什么?
然后再分别算一算图上的这三个三角形的内角和。得出结论:三角形不论大小,它的内角和都是180 。
3、用一张正方形纸折一折,填一填。
4、说理:一个直角三角形中最多有几个直角?为什么?
一个钝角三角形中最多有几个直角?为什么?
四、布置作业
第4、5题
《三角形的内角和》教案7
本节微课视频是苏教版数学教科书四年级下册第78~79页的教学内容。在教学之前,学生已经掌握了角的概念、角的分类和角的测量;认识了三角形,知道三角形是由三条线段首尾相接围成的图形,有三个顶点、三条边和三个角。这些已经构成学生进一步学习的认知基础。《三角形的内角和》是三角形的一个重要性质。学生在学习四年级上册“角的度量”时,通过测量三角尺三个角的度数,知道三角尺三个角加起来的和是180度,再加上课前的预习,大部分的学生已经能得出结论:三角形的内角和是180度,只不过他们不清楚其中的道理,只是机械性的记忆。因此,本节课的重点不是结论,而是验证结论的过程。教材组织学生对不同形状、不同大小的三角形的内角和进行探索,通过转化、推理、比较、操作和验证,总结概括出“所有三角形的内角和都是180度”的规律,从而进一步发展学生的空间观念,提高学生的自主学习能力和推理能力。
下面就具体谈谈微课的教学设计:
一、教学目标
1、通过测量、转化、观察和比较等活动探索发现并验证“三角形的内角和是180度”的规律,并且能利用这一结论解决求三角形中未知角的度数等实际问题。
2、通过折一折、拼一拼和剪一剪等一系列的操作活动培养学生的联想意识和动手操作能力。体验验证结论的过程与方法,提高学生分析和解决问题的能力。
3、使学生通过操作的过程获得发现规律的喜悦,获得成就感,从而激发学生积极主动学习数学的兴趣。
二、教学重点和难点
重点:让学生亲自验证并总结出三角形的内角和是180度的结论
难点:对不同验证方法的理解和掌握。
三、教学过程
(一)质疑——发现问题,提出问题
出示学生熟悉的一副三角尺,让学生说说每块三角尺中各个内角的度数。试着计算每块三角尺的三个内角的度数加起来的和是多少度?
交流:不同三角尺的内角和都是一样的吗?三角尺的内角和有什么特征?
引导学生得出三角尺的三个内角的度数和是180度。
提问:三角尺的形状是什么三角形?三角尺的内角和是180度,我们还可以说成是什么?(得出结论:直角三角形的内角和是180度。)
你有什么办法验证这一结论呢?(动手操作,寻找答案)
方法一:拿出不同的直角三角形,分别测量三个内角的度数,再求和。(提示存在误差,但三个内角的和都在180度左右)
方法二:用两个相同的直角三角形拼成一个长方形,由于长方形的四个内角和是360度,因此能得出一个直角三角形的三个内角和是180度。
启发:直角三角形的内角和是180度,这一结论让你联想到了什么?你能提出什么新的数学问题呢?
引导:从直角三角形的内角和联想到所有三角形的内角和,提出问题:所有三角形的内角和都是180度吗?
(二)探究——分析问题,解决问题
出示三个三角形:直角三角形、锐角三角形和钝角三角形。
引导:直角三角形的内角和是180度了,由此我们联想到锐角三角形和钝角三角形的内角和也有可能是180度。
提问:你有什么办法来验证这一猜想呢?
拿出事先从课本第113页剪下来的3个三角形,动手操作,自主探索,发现规律。
方法一:可以像上面那样先测量每个三角形的三个内角的度数,再计算出它们的和,看看能发现什么规律。学生测量计算,教师巡视指导。
引导:测量时要尽量做到准确,测量是存在误差的,对于测量的不准的同学要重新测定和确认,计算出它们的和,发现其中的规律。
方法二:既然是求三角形的内角和,我们就可以想办法把三角形的3个内角拼在一起,看看拼成了什么角。那怎样才能把3个内角拼在一起呢?我们可以将三角形中的3个内角撕下来,再拼在一起,会发现拼成了一个*角,是180度。
方法三:把三角形的三个内角撕下来,虽然能将他们拼在一起,但是原有的三角形被破坏了。因此,我们还可以通过折一折的方法,把三个内角折过来拼在一起,同样会发现拼成一个*角,是180度。
方法四:将锐角三角形和钝角三角形分别分成两个直角三角形,利用直角三角形内角和是180度进行推理。180+180=360度,360-90-90=180度。
(三)归纳——获得结论
交流:回顾以上3个三角形的内角和的探索过程,你发现了什么规律?
总结:通过测量计算、拼一拼和折一折的方法,我们可以消除心中的问号,肯定得说出所有三角形的内角和都是180度这一结论。
(四)拓展——巩固练习
1、将一个大三角形剪成两个小三角形,每个小三角形的内角和是多少度?
2、在一个三角形中,根据两个内角的度数,求第三个内角的度数?
《三角形的内角和》教案8
一、学生知识状况分析
学生技能基础:学生在以前的几何学习中,已经学习过*行线的判定定理与*行线的性质定理以及它们的严格证明,也熟悉三角形内角和定理的内容,而本节课是建立在学生掌握了*行线的性质及严格的证明等知识的基础上展开的,因此,学生具有良好的基础。
活动经验基础:本节课主要采取的活动形式是学生非常熟悉的自主探究与合作交流的学习方式,学生具有较熟悉的活动经验.
二、教学任务分析
上一节课的学习中,学生对于*行线的判定定理和性质定理以及与*行线相关的简单几何证明是比较熟悉的,他们已经具有初步的几何意识,形成了一定的逻辑思维能力和推理能力,本节课安排《三角形内角和定理的证明》旨在利用*行线的相关知识来推导出新的定理以及灵活运用新的定理解决相关问题。为此,本节课的教学目标是:
知识与技能:
(1)掌握三角形内角和定理的证明及简单应用。
(2)灵活运用三角形内角和定理解决相关问题。
数学能力:用多种方法证明三角形定理,培养一题多解的能力。
情感与态度:对比过去撕纸等探索过程,体会思维实验和符号化的理性作用.
三、教学过程分析
本节课的设计分为四个环节:情境引入探索新知反馈练习课堂小结
第一环节:情境引入
活动内容:(1)用折纸的方法验证三角形内角和定理.
实验1:先将纸片三角形一角折向其对边,使顶点落在对边上,折线与对边*行(图6-38(1))然后把另外两角相向对折,使其顶点与已折角的顶点相嵌合(图(2)、(3)),最后得图(4)所示的结果
(1) (2) (3) (4)
试用自己的语言说明这一结论的证明思路。想一想,还有其它折法吗?
(2)实验2:将纸片三角形三顶角剪下,随意将它们拼凑在一起。
试用自己的语言说明这一结论的证明思路。想一想,如果只剪下一个角呢?
活动目的:
对比过去撕纸等探索过程,体会思维实验和符号化的理性作用。将自己的操作转化为符号语言对于学生来说还存在一定困难,因此需要一个台阶,使学生逐步过渡到严格的证明.
教学效果:
说理过程是学生所熟悉的,因此,学生能比较熟练地说出用撕纸的方法可以验证三角形内角和定理的原因。
第二环节:探索新知
活动内容:
①用严谨的证明来论证三角形内角和定理。
②看哪个同学想的方法最多?
方法一:过A点作DE∥BC
∵DE∥BC
DAB=B,EAC=C(两直线*行,内错角相等)
∵DAB+BAC+EAC=180
BAC+C=180(等量代换)
方法二:作BC的延长线CD,过点C作射线CE∥BA.
∵CE∥BA
ECD(两直线*行,同位角相等)
ACE(两直线*行,内错角相等)
∵BCA+ACE+ECD=180
B+ACB=180(等量代换)
活动目的:
用*行线的判定定理及性质定理来推导出新的定理,让学生再次体会几何证明的严密性和数学的严谨,培养 学生的逻辑推理能力。
教学效果:
添辅助线不是盲目的,而是为了证明某一结论,需要引用某个定义、公理、定理,但原图形不具备直接使用它们的条件,这时就需要添辅助线创造条件,以达到证明的目的.
第三环节:反馈练习
活动内容:
(1)△ABC中可以有3个锐角吗?3个直角呢?2个直角呢?若有1个直角另外两角有什么特点?
(2)△ABC中,C=90,A=30,B=?
(3)A=50,C,则△ABC中B=?
(4)三角形的三个内角中,只能有____个直角或____个钝角.
(5)任何一个三角形中,至少有____个锐角;至多有____个锐角.
(6)三角形中三角之比为1∶2∶3,则三个角各为多少度?
(7)已知:△ABC中,B=2A。
(a)求B的度数;
(b)若BD是AC边上的高,求DBC的度数?
活动目的:
通过学生的反馈练习,使教师能全面了解学生对三角形内角和定理的概念是否清楚,能否灵活运用三角形内角和定理,以便教师能及时地进行查缺补漏.
教学效果:
学生对于三角形内角和定理的掌握是非常熟练,因此,学生能较好地解决与三角形内角和定理相关的问题。
第四环节:课堂小结
活动内容:
①证明三角形内角和定理有哪几种方法?
②辅助线的作法技巧.
③三角形内角和定理的简单应用.
活动目的:
复习巩固本课知识,提高学生的掌握程度.
教学效果:
学生对于三角形内角和定理的几种不同的证明方法的理解比较深刻,并能熟练运用三角形内角和定理进行相关证明.
课后练习:课本第239页随堂练习;第241页习题6.6第1,2,3题
四、教学反思
三角形的有关知识是空间与图形中最为核心、最为重要的内容,它不仅是最基本的直线型*面图形,而且几乎是研究所有其它图形的工具和基础.而三角形内角和定理又是三角形中最为基础的知识,也是学生最为熟悉且能与小学、中学知识相关联的知识,看似简单,但如果处理不好,会导致学生有厌烦心理,为此,本节课的设计力图实现以下特点:
(1)通过折纸与剪纸等操作让学生获得直接经验,然后从学生的直接经验出发,逐步转到符号化处理,最后达到推理论证的要求。
(2)充分展示学生的个性,体现学生是学习的主人这一主题。
(3)添加辅助线是教学中的一个难点,如何添加辅助线则应允许学生展开思考并争论,展示学生的思维过程,然后在老师的引导下达成共识。
《三角形的内角和》教案9
【教学目标】
1、利用电子白板,借助生活情景,通过“量一量”,“算一算”,“拼一拼”,“折一折”的方法,推想归纳出三角形内角和是180°,并能应用这一知识解决一些简单问题。
2、经历猜测——验证——得出结论——解释与应用的过程,体验“归纳”、“转化”等数学思想方法。
3、通过数学活动使学生获得成功的体验,增强自信心,培养学生的创新意识,探索精神和实践能力。
【教学重、难点】
教学重点:引导学生发现三角形内角和是180°。
教学难点:用不同方法验证三角形的内角和是180°。
【教学过程】
一、创设情景,提出问题
小游戏:猜一猜藏在信封后面的是什么三角形。(出示)
师:三角形的这三个角究竟存在什么奥秘呢,我们一起来研究研究。
【设计意图:运用电子白板,游戏引入,激起学生对于三角形已有知识的回忆,为下面探求新的知识作好铺垫。创设疑问,引出要探讨的问题,调动学生学习的兴趣。】
二、动手实践、自主探究
师:什么是内角?内角和是什么意思?三角形的内角和是多少度呢?
1.从特殊入手——计算直角三角板的内角和。
(1)师生拿出30度直角三角板
师:这是什么?是什么三角形?这个角是多少度?它的内角和是多少度,请口算?
(2)再拿出45度直角三角板。
师:这是什么三角形?这个角是多少度?它的内角和是多少度?
(3)师:通过刚才的计算,你有什么发现?
生:这两个三角形内角和都是180°。
【设计意图:这一环节先让学生在明确三角形内角和的概念基础上,先借助电子白板出示特殊三角形——“直角三角形”,让学生初步感知三角形的内角和,通过计算学生很容易发现直角三角形的内角和是180度,为学生作进一步猜想奠定理论基础。】
2、由特殊到一般——猜想验证,发现规律。
(1)提出猜想
师:其他所有三角形的内角和是否也是180°?
生:是、不是……
师:有的说是,有的说不是,我们的猜想对不对呢,需要验证。
(出示小组调查表。)
(2)验证猜想(生测量计算,师巡视指导,收集回报的素材)
师:哪个小组愿意将您们组的发现与大家分享一下?
生上台展示:我们小组研究的是直角三角形(锐角三角形、钝角三角形),我们测量它的三个角分别是 度 度 度,内角和是180°,我们发现直角三角形(锐角三角形、钝角三角形)的内角和是180°)
师:研究锐角三角形(锐角三角形、钝角三角形)的小组请举手,你们的结论和他们一样吗?请你们小组来谈谈你们的发现!
【设计意图:实物投影仪在这个环节发挥了重要的作用,学生充分展示自己的想法。在初步感知的基础上,教师让学生猜测是否所有的三角形的内角和都一样呢?这个问题为后面的猜测和验证进行铺垫,引发思考,激发学习兴趣。然后再通过算出特殊的三角形的内角和推广到猜测所有三角形的内角和,引导学生从特殊三角形过渡到一般三角形的验证规律。】
(3)揭示规律
师:通过计算我们发现直角三角形的内角和是180°,锐角三角形的内角和是——180度,钝角三角形的内角和也是——180度,这就验证了我们的猜想。现在我们可以说所有的三角形的内角和是(完善课题180°)。
注:学生的汇报中可能会出现答案不是唯一的情况,如:180°、179°、181°等。(板书)(分别对这几个数进行统计)
师:观察这些测量结果你能发现什么?(三角形内角和大约是180°左右)
(4)方法提升。
师:我们从直角三角形——锐角三角形——钝角三角形——推出所有三角形的内角和,这种由个别到一般的推理方法,在数学上叫归纳推理(板书)归纳推理是重要的推理方法。
【设计意图:通过度量、比较这一活动,让学生在实践中充分感知三角形的内角和大小。但由于测量本身有差异,教师并没有直接告知三角形内角和的结论,而是让学生去另辟蹊径想办法验证前面的猜想,想一想有没有别的方法来求三角形的内角和,让思维真正“展翅高飞”,充分调动学生学习的积极性、自主性。】
3、剪拼法再次验证——转化思想的运用。
师:刚才我们通过测量发现了三角形的内角和是180°,现在我们不用量角器测量了,你能想办法证明三角形的内角和是180°吗?先思考再动手做。
生探究,师巡视指导,收集汇报素材。(呈现作品——说方法——统计点评)
班内交流,汇报撕拼法、折叠法。
师:将三角形的内角通过剪拼、折叠,转化成*角,你们应用了一种重要的数学思想——转化(板书),转化就是将我们不会直接解决的新问题,变成已会的旧知识,进而解决。
【设计意图:孩子的智慧来自于动手,电子白板适时演示,让学生通过“剪一剪,拼一拼,折一折”等操作方法,猜想、验证得出结论:三角形的内角和是180°,并利用语言概括出结论,提高语言表达能力。】
4.展示——再次强化。
师:现在大家知道这几个三角形的内角和是多少度吗?
师:我们可以请电脑来给我们验证一下。
(引入白板,通过拖动演示三角形从小到大度数的不断变化)
结论:不论三角形的大小、形状怎样变化,任何三角形的内角和都是180°。
【设计意图:让学生在白板上亲眼观看到拖拉出类别不同的三角形,让学生在拖动的过程中观察、体验。学生兴趣盎然,学习气氛热烈,学生不仅感受到这3个三角形的内角和是180°,还随着电子白板上这个三角形的任意拖动,发现三角形的3个角的度数在不断的变化,而三角形的内角和则始终没有变化,仍然是180°,深刻地理解了任意三角形的内角和都是180°。而这,恰恰就是本课的教学重点和难点。传统课中不容易突破的教学重难点轻而易举的攻破。抽象的知识变得直观、具体,促进学生知识内化的过程。】
三、巩固应用,内化提高
1.介绍科学家帕斯卡(白板出示帕斯卡的资料)
2.练习
(1). 做一做:在一个三角形中,∠1=140度, ∠3=25度,求∠2的度数。
(2). 求出下列三角形中各个角的度数。(书88页第9题)
(3). 算一算(书88页第10题):爸爸给小红买了一个等腰三角形的风筝。它的一个底角是70°,它的顶角是多少度?
【设计意图:练习中使用白板的交互性,学生更愿意参与,得出结果也更有成就感。素质教育要求我们要面向全体学生。为此,根据问题的不同难度,教学时兼顾到不同层次的学生,使每位学生都有所收获,都有机会体会到成功的喜悦。设计练习有新意,同时也注意了坡度。既有基本练习,也有发展性练习,尽最大努力体现因材施教。】
四、课后思考、拓展延伸
同学们,数学奥妙无穷,三角形是边数最少的封闭*面图形,那么,四边形五边形六边形(出图示)……的内角和是多少度,他们又有什么规律呢?有兴趣的同学下课之后可继续研究,下课。
《三角形的内角和》教案10
教学目标:
1、通过量、剪、拼、摆等直观操作的方法,让学生探索并发现三角形内角和等于180度。
2、在活动交流中培养学生合作学习的意识和能力,让学生经历猜测探索总结的数学学习过程,在实验活动中体验探索的过程和方法。
3、通过运用三角形内角和的性质解决一些简单的问题,使学生体会数学与现实生活的联系,体会到数学的价值,增加学生学数学的信心和兴趣。
教学重点:
探索发现三角形内角和等于180并能应用。
教学难点:
三角形内角和是180的探索和验证。
教学过程:
一、创设情境,提出问题
师:大家喜欢猜谜语吗?
生:喜欢。
师:下面请大家猜一个谜语(大屏幕出示形状似座山,稳定性能坚。三竿首尾连,学问不简单。
(打一几何图形))
生:三角形。
师:三角形中都有哪些学问?
生:三角形有三条边,三个角,具有稳定性。
生:三角形按角分,可以分成锐角三角形、直角三角形、钝角三角形。
生:三角形按边分,可以分成等腰三角形,不等边三角形,其中等腰三角形又包含了两条边相等的三角形和等边三角形。
生:一个三角形中最多只能有一个直角,最多只能有一个钝角,最少有两个锐角。
生:三角形的内有和是180。
生:(一脸疑惑)
师:(板书:三角形的内角和是180),你有什么疑惑?
生:什么是内角?
生:每个三角形的内角和都是180吗?
(根据学生的问题,在三角形的内角和是180后面加上一个?)
二、自主探索,实践验证
1、理解内角师:什么是内角?
生:我认为三角形的内角就是指三角形的三个角。
师:三角形的每个角都是三角形的内角,每个三角形都有三个内角。
2、理解内角和。
师:那三角形的内角和又是指什么?
生:我认为三角形的内角和就是把三角形的三个内角的度数加起来的和。
师:为了方便,我们将三角形的每个内角编上序号1、2、3、我们叫它1、2、3,这三个角的度数和,就是这个三角形的内角和。
3、实践验证
师:每个三角形的内角和都是180吗?用什么方法来验证呢?
生:量一量每个角的度数,然后加起来看看是不是180。
师:请大家拿出课前准备的三角形,亲自量一量,算一算。(学生动手量一量)
师:谁愿意把你的劳动成果和大家分享一下?
生:我量的这个三角形的三个内角的度数分别是60、60、60,加起来一共是180。
师:这位同学量的是一个锐角三角形,并且是比较特殊的三角形等边三角形。
生:我量这个三角形的三个内角的度数分别是45、45、90,加起来一共是180。
师:这是我们三角尺中的一个,也比较特殊,是一个等腰直角三角形。
生:我量的是三角尺中的另一个,三个内角的度数分别是60、30、90,加起来一共是180 生:我量的是钝角三角形,三个内角的度数分别是85、60、38,加起来一共是183。
师:你发现了什么?
生:有的三角形的内角和是180,而有的三角形的内角和却不是180。
师:看来三角形的内角和不一定是180。
生:老师,测量会有误差,量出来的不是很精确,那么求出来的结果也不够精确。虽然不都是三个内角加起来不都是180,但都接近180。
生:都接近180就能说一定是180吗?
师:科学来不得半点虚假,看来这个是不能让大家信服的。那还可以用什么方法来验证呢?下面请同学们小组合作,发挥小组成员的智慧,充分利用大家的学具进行验证,比一比哪些组的方法富有新意,开始!
(学生在小组内进行探索验证。教师巡视,参与到学生的研究中)
师:请每个小组选择一个代言人,和大家分享一下你们的智慧。
生:(边展示边交流)我们小组运用了折一折的方法,把三角形的三个内角都向内折,三个内角就拼成了一个*角,也就是180,所以我们小组得出三角形的内角和是180。
师:你折的只是锐角三角形,只能证明锐角三角形的内角和是180,直角三角形,钝角三角形是不是也是这样的?
生:我们小组也有折的直角三角形,钝角三角形。
(其它的成员展示不同的三角形)
师:看这个小组的同学想问题多全面呀,不仅想到了用什么方法,还想到了用不同的三角形进行验证,老师实在是佩服你们组的智慧,让我们把掌声送给他们!
师:哪个小组和他们的方法不一样?
生:我们小组把三角形的三个内角都撕了下来,拼在了一起,正好拼成了一个*角,也就是180。我们也实验了不同的三角形,三个内角都可以拼成*角,所以我们小组得出结论,三角形的内角和是180。
师:这个小组的方法简便,易操作,很好。
生:我们小组成员是这样想的,一个长方形有4个直角,每个直角90,那么长方形的内角和就是360,每个长方形都可以*均分成两个直角三角形,每个直角三角形的内角和就是180。
师:你们小组很聪明,从长方形的内角和联想到直角三角形的内角和是180,从不同的角度去思考问题,谢谢你为我们提供了这么好的方法!
4、小结
师:刚才同学们用量、折、剪、拼、计算、推理等这么多巧妙的方法得出了无论是什么样的三角形的内角和都是1800,你还有什么疑问吗?
生:没有。
师:(去掉问号)那就让我们大声地读出来三角形的内角和是1800。
三、巩固应用,加深理解
1、说一说每个三角形的内角和是多少度
师:(出示一个大三角形)这个大三角形的内角和是多少度?
生:180
师:(出示一个小三角形)这个小三角形的内角和是多少度?
生:180
师:(演示)把这两个三角形拼在一起,拼成的大三角形的内角和是多少度?
生:180
师:为什么每个三角形的内角和是1800,而合起来还是180呢?另外那180去哪儿了?
生:把两个三角形拼成一个大三角形,两个直角不再是大三角形的内角,所以少了180
师:(演示)把一个大三角形分成两个三角形,每个三角形的内角和是多少度?
生:180
2、求下面各角的度数
师:如果老师告诉你一个三角形的两个角的度数,你能说出第三个角的度数吗?
(出)
生:三角形内角和是180,在第一个三角形中,用180-75-28,A=77
生:用180-90-35,C=55。
生:第二个三角形是直角三角形,B是直角,也可以直接用90-35=55。
生:第三个三角形中,用180-20-45,B=115。
3、一个等腰三角形的风筝,它的一个底角是70,它的顶角是多少度?
生:等腰三角形的两个底角相等,所以用180-70-704
师:三角形的内角和在我们的生活中应用很广泛,老师给大家带来一个在建筑中应用的例子。
在设计这座大桥时,如果设计师将斜拉的钢索与桥柱形成的夹角设计成了56,建筑师在造桥时怎样才能确定钢索与桥柱是否形成了这个角度?
生:用量角器量一量
师:量哪个角?量一量斜拉的钢索与桥柱形成的夹角吗?
生:桥面与桥柱形成一个直角,是90,斜拉的钢索与桥柱形成的夹角是56,那么用180-90-56=34,就是斜拉的钢索与桥面的夹角,所以只要让斜拉的钢索与桥面的夹角是34,那么斜拉的钢索与桥柱形成的夹角就是56
师:你真是个善于观察、善于思考的孩子,努力学习,将来一定会成为一名优秀的建筑师。
四、回顾总结,拓展延伸
师:40分钟很快就过去了,你愿意把自己的收获与大家共同分享吗?
生:我知道了三角形的内角和是180。
生:无论是大三角形,还是小三角形,无论是锐角三角形,还是钝角三角形,还是锐角三角形,内角和都是180。
生:把一个大三角形分成两个小三角形,每个三角形的内角和还是180,把两个小三角形拼成一个大三角形,大三角形的内角和还是180。
生:我可以用撕、拼、折等方法来验证三角形的内角和是180。
师:这个同学不仅学会了知识,而且学会了方法,我们只有学会了方法,才能更好地去探究更多的知识。
师:那你现在知道为什么一个三角形内只能有一个直角或一个钝角吗?
生:两个直角的度数之和是180,再加上一个角,三个角的度数之和超过了180,所以一个三角形中最多只能有一个直角。
生:两个钝角的度数之和就超过了180,再加上一个角,就更大了,所以一个三角形中最多只能有一个钝角。
师:我们学习知识,必须知其然并知其所以然。
师:三角形中还有许许多多的学问,让我们在以后的学习中继续去研究。
小班主题三角形教案3篇(扩展5)
——三角形边的关系教案10篇
三角形边的关系教案1
教学目标:
1、通过量一量、摆一摆、算一算等实验活动,探索并发现三角形任意两边之和大于第三边,并应用这关系解释一些生活现象,解决一些简单的生活问题。
2、在实验过程中培养学生的猜想意识、自主探索、合作交流的能力。
教学重点、难点:探索并发现三角形任意两边之和大于第三边。
教学准备:学生、老师各准备几根长短不等的小棒、直尺、探究报告单。
教学过程:
一、复习旧知,导入新课
这是什么图形呢?(三角形)谁来说说什么是三角形?怎样理解这个“围”字(端点首尾相连)。同学们还知道三角形的哪些知识?关于三角形的知识还有很多,我们继续往下看。
二、动手操作,发现问题
师:老师这里有三根小棒,分别长3、5、10厘米,这3根小棒能围成一个什么图形?
生:三角形。
师:谁愿意上来围一围?围的时候要注意小棒首尾相连。
师:这三根小棒为什么围不成三角形呢?三角形的三条边之间到底有什么关系呢?今天,我们就一起来研究三角形的三边关系(板书课题)。
三、猜想验证,发现规律
师:我们发现这三根小棒不能围成三角形,怎样做才能围成三角形呢?
生:换一根小棒
师:怎样换?同学们说的都是你们的猜想(演示猜想1)
1、学法指导
师:你们的这些猜想是否正确,三角形的三条边到底有什么关系?我们可以通过做实验来验证一下,现在老师给同学们准备了一些材料:3厘米、5厘米、8厘米、10厘米小棒各一根一起试着围一围三角形。同学们亲自动手摆一摆,拼一拼,看看有什么结果。先看要求(大屏幕)。
操作要求:
(1)、2人一组合作完成四种拼法
(2)、围三角形时要注意首尾相连。
(3)、完成后,填写好活动记录表准备交流
第一根小棒长
第二根小棒长
第三根小棒长
能否围成三角形
2、 动手操作,寻找规律(师巡视,并指导)
3、 交流汇报,探究规律。
师:哪个小组愿意来汇报。
小组上台展示,
3厘米、8厘米、10厘米 能
3厘米、5厘米、10厘米 不能
3厘米、5厘米、8厘米 不能
5厘米、8厘米、10厘米 能
师:其它组有不同意见吗?
师:仔细观察四种结果,有的围不成,而有的却能围成。这是为什么呢?先看不能围成三角形的每组小棒的长度之间有什么关系?说说你能发现些什么?同桌讨论一下。能围成三角形的这几组小棒长度之间又有什么联系?
三根小棒要围成三角形,必须满足什么条件?
通过刚才的实验和分析,你发现三角形三条边长度之间有什么关系吗?
先看不能围成三角形的这组情况,谁愿意说说3、5、10这三根小棒为什么不能围成三角形?
生:
师:其他同学赞同吗?谁再来说一说。
师:我明白了,3厘米的边是不能和5厘米、10厘米的边围成三角形的,因为这两条边之和小于第三条边。(板书3+4〈8)你很会观察。(演示)
师:再说3、5、8这三根,同学们有些争议,到底它们能不能围成三角形呢?不能,为什么?有谁愿意谈谈?
生:3+5=8 重合了 不能
师:是这样吗?(演示)请看大屏幕。
师:真的是这样,通过演示现在明白这个同学的意思了吗?谁愿意再来说一说。
师:通过以上的动手操作和探究分析,我们发现了当两边之和小于、等于第三条边时,这3条边是围不成三角形的。
师:那么怎样才能围成三角形呢?
生:两条边加起来要大于第三边就行了。
师(板书):两边之和大于第三边
师:我们来看看能围成三角形的这两组是不是这样的呢,3+8>10、8+5>10
看起来是这样的。
3、师:回头看不能围成的情况,也有3+8>4、4+8>3、3+8>5、5+8>3(两边之和大于第三边)的情况,怎么就不能围成三角形呢?
生:有一种不符合就不行了
师:看来只是其中的两条边之和大于第3条边是不完整的,
生1:加“任何”、“任意”
生2:其他两边之和都大于第三条边。
生3:无论哪两条边之和都要大于第三边。
4、归纳小结
师:看来只是其中的两条边之和大于第3条边是不完整的,
师:这句话概括说就是:任意两边之和大于第三边(板书:任意)
师:是这样吗?再挑选一组能围成三角形的三条边,来验证:
生:3+4>5、3+5>4、4+5>3,
师:这个例子证明了你的想法是对的,这两个三角形的三边关系都是:任意两边之和大于第三边(齐读)
四、课堂小结
老师在生活中还看到了这么一种现象:(演示)公园里有一条这样的路,路的两旁是草坪,为什么很多人都往草坪中间走?
师:今天你有什么收获?
其实数学就在我们身边,只要你*时多观察、多动脑,你一定能成为数学的好朋友。
三角形边的关系教案2
教学目标:
1、探索并发现三角形任意两边的和大于第三边。
2、在实验过程中,培养学生自主探索合作交流的能力。
3、应用发现的结论,来判断指定长度的三条线段,能否组成三角形。
教学重难点:
1、探索并发现三角形任意两边之和大于第三边。
2、应用发现的结论,来判断指定长度的三条线段,能否组成三角形。
教具准备:
直尺、小棒
教学过程:
课前可以请学生准备四组小棒,课上组织学生摆一摆,让学生边操作边把有关的数据记录在表内。当学生完成操作活动后,教师可以组织学生先讨论能围成三角形的两组小棒的数据,并在填出“>”“<”或“=”。
一、数学活动
1、出示一组长短不一的几根小棒,请你挑选几根围成三角形。
不重复,你还可以怎么围?
通过实验,发现并不是任意三根小棒都可以围成三角形。出示不能围成三角形的情况,你发现了什么?想一想,为什么?
2、三角形形路线,从邮局到杏云村,走哪条路最近?为什么?
3、是不是任意两条边的程度的和一定比第三条边大呢?画一画,算一算。把计算结果填写在第33页的表上。
二、运用知识模型
1、第1题:下面各组线段能围成三角形吗?
2、第2题:组织学生用小棒摆一摆,并填入表中。
3、第3题:摆一摆,填一填。
4、第4题:如果三角形的两条边的长分别是5厘米和8厘米,那么第三条边可能是多长?有多个答案,第三边只要大于3厘米小于13厘米即可。鼓励学生尽可能多的得到答案。
三、总结
通过今天的学习你有什么想法?
板书设计:
三角形边的关系
三角形任意两边的和大于第三边
三角形边的关系教案3
教学目标:
1.通过动手实践,自主探索,合作交流发现三角形任意两条边的和大于第三边。
2、能判断给定长度的三条线段是否能围成三角形,能运用三角形三边关系解决生活中简单的实际问题,感受到生活中处处有数学。
3.在探索体验的过程中,能进行简单、有条理的思考。通过学习,发展空间观念,体验成功的喜悦,激发学生学习数学的兴趣。
教学重点:理解、掌握“三角形任意两边之和大于第三边”的性质。
教学难点:引导探索三角形的边的关系,并发现“三角形任意两边的和大于第三边”的性质。教学准备:、不同长度纸条若干张、实验表格。
教学过程:
一、 创设情境
1、出示情境图。
师:通过刚才摆三角形,你发现了什么?
(引导学生提出这样的问题:为什么我们用的三张纸条中有两条长的和大于第三条长却没有摆成三角形呢?)
师:通过刚才是实验,我们可以发现三角形三条边在长短上有某种关系,但究竟怎样的三张纸条才能摆成一个三角形?让我们再来做一个实验。
2、 动手实验2:进一步探究怎样的三张纸条才可以摆成三角形。
师:每组同学任意选择下面三组中的任意一组纸条做进一步实验,并完成相应的实验记录。(1)4c 5c 9c (2) 3c 6c 10c (3) 6c 7c 8c
学生汇报展示:能或不能摆成三角形任意两边的和是否大于第三边( 1 )不 能4+5=9 4+9>5 5+9>4发现:两边之和有时大于第三边,有时等于第三边,不能摆成三角形( 2 )不 能6+10>3 3+10>6 3+6<10发现:两边之和有时大于第三边,有时小于第三边,不能摆成三角形( 3 )能6+7>8 6+8>7 7+8>6发现:任意两边之和大于第三边,能摆成三角形师:对于三角形的三边关系,怎样表达更严密?体会任意两边的含义。
三、 拓展应用:
1、 说一说老师为什么走中间的这条路最近?
2、 判断:哪一组中的3根小棒可以摆成一个三角形?(单位:厘米)
(1)3,6,9 (2)4,4,10
(学生通过比较任意两边之和是否大于第三边,来判断是否可以围成三角形,教师再让学生讨论交流好方法)
3、解决问题:
师:小明想要给他的小狗做一个房子,房顶的框架是三角形的,其中一根木条是3分米,另一根是5分米。
(1)第三根木条可以是多少分米?(取整数)
(2)第三边的木条的长度是a分米,那么a的取值范围是( )
四、 回顾反思:
同学们,今天学到了什么知识?你最大的收获是什么?还有哪些不懂的地方吗?
三角形边的关系教案4
教学目标:
1、通过量一量、摆一摆、算一算等实验活动,探索并发现三角形任意两边之和大于第三边,并应用这关系解释一些生活现象,解决一些简单的生活问题。
2、在实验过程中培养学生的猜想意识、自主探索、合作交流的能力。
教学重点、难点:探索并发现三角形任意两边之和大于第三边。
教学准备:学生、老师各准备几根长短不等的小棒、直尺、探究报告单。
教学过程:
一、复习旧知,导入新课
这是什么图形呢?(三角形)谁来说说什么是三角形?怎样理解这个“围”字(端点首尾相连)。同学们还知道三角形的哪些知识?关于三角形的知识还有很多,我们继续往下看。
二、动手操作,发现问题
师:老师这里有三根小棒,分别长3、5、10厘米,这3根小棒能围成一个什么图形?
生:三角形。
师:谁愿意上来围一围?围的时候要注意小棒首尾相连。
师:这三根小棒为什么围不成三角形呢?三角形的三条边之间到底有什么关系呢?今天,我们就一起来研究三角形的三边关系(板书课题)。
三、猜想验证,发现规律
师:我们发现这三根小棒不能围成三角形,怎样做才能围成三角形呢?
生:换一根小棒
师:怎样换?同学们说的都是你们的猜想(演示猜想1)
1、学法指导
师:你们的这些猜想是否正确,三角形的三条边到底有什么关系?我们可以通过做实验来验证一下,现在老师给同学们准备了一些材料:3厘米、5厘米、8厘米、10厘米小棒各一根一起试着围一围三角形。同学们亲自动手摆一摆,拼一拼,看看有什么结果。先看要求(大屏幕)。
操作要求:
(1)、2人一组合作完成四种拼法
(2)、围三角形时要注意首尾相连。
(3)、完成后,填写好活动记录表准备交流
第一根小棒长
第二根小棒长
第三根小棒长
能否围成三角形
2、 动手操作,寻找规律(师巡视,并指导)
3、 交流汇报,探究规律。
师:哪个小组愿意来汇报。
小组上台展示,
3厘米、8厘米、10厘米 能
3厘米、5厘米、10厘米 不能
3厘米、5厘米、8厘米 不能
5厘米、8厘米、10厘米 能
师:其它组有不同意见吗?
师:仔细观察四种结果,有的围不成,而有的却能围成。这是为什么呢?先看不能围成三角形的每组小棒的长度之间有什么关系?说说你能发现些什么?同桌讨论一下。能围成三角形的这几组小棒长度之间又有什么联系?
三根小棒要围成三角形,必须满足什么条件?
通过刚才的实验和分析,你发现三角形三条边长度之间有什么关系吗?
先看不能围成三角形的这组情况,谁愿意说说3、5、10这三根小棒为什么不能围成三角形?
生:
师:其他同学赞同吗?谁再来说一说。
师:我明白了,3厘米的边是不能和5厘米、10厘米的边围成三角形的,因为这两条边之和小于第三条边。(板书3+4〈8)你很会观察。(演示)
师:再说3、5、8这三根,同学们有些争议,到底它们能不能围成三角形呢?不能,为什么?有谁愿意谈谈?
生:3+5=8 重合了 不能
师:是这样吗?(演示)请看大屏幕。
师:真的是这样,通过演示现在明白这个同学的意思了吗?谁愿意再来说一说。
师:通过以上的动手操作和探究分析,我们发现了当两边之和小于、等于第三条边时,这3条边是围不成三角形的。
师:那么怎样才能围成三角形呢?
生:两条边加起来要大于第三边就行了。
师(板书):两边之和大于第三边
师:我们来看看能围成三角形的这两组是不是这样的呢,3+8>10、8+5>10
看起来是这样的。
3、师:回头看不能围成的情况,也有3+8>4、4+8>3、3+8>5、5+8>3(两边之和大于第三边)的情况,怎么就不能围成三角形呢?
生:有一种不符合就不行了
师:看来只是其中的两条边之和大于第3条边是不完整的",
生1:加“任何”、“任意”
生2:其他两边之和都大于第三条边。
生3:无论哪两条边之和都要大于第三边。
4、归纳小结
师:看来只是其中的两条边之和大于第3条边是不完整的,
师:这句话概括说就是:任意两边之和大于第三边(板书:任意)
师:是这样吗?再挑选一组能围成三角形的三条边,来验证:
生:3+4>5、3+5>4、4+5>3,
师:这个例子证明了你的想法是对的,这两个三角形的三边关系都是:任意两边之和大于第三边(齐读)
四、课堂小结
老师在生活中还看到了这么一种现象:(演示)公园里有一条这样的路,路的两旁是草坪,为什么很多人都往草坪中间走?
师:今天你有什么收获?
其实数学就在我们身边,只要你*时多观察、多动脑,你一定能成为数学的好朋友。
三角形边的关系教案5
教学目标:
1、通过动手实践,自主探索,合作交流发现三角形任意两条边的和大于第三边。
2、能判断给定长度的三条线段是否能围成三角形,能运用三角形三边关系解决生活中简单的实际问题,感受到生活中处处有数学。
3、在探索体验的过程中,能进行简单、有条理的思考。通过学习,发展空间观念,体验成功的喜悦,激发学生学习数学的兴趣。
教学重点:
理解、掌握三角形任意两边之和大于第三边的性质。
教学难点:
引导探索三角形的边的关系,并发现三角形任意两边的和大于第三边的性质。
教学准备:
课件、不同长度纸条若干张、实验表格。
教学过程:
一、创设情境
1、出示情境图。
*
师:同学们仔细观察这幅图,想一想从老师家到学校有几条路可以走?
(学生通过观察并结合自己的生活经验,可以说出这样几条线路:从老师家直接到学校;从老师家经过*再到学校,或者从老师家经过新华书店再到学校。)
师:你觉得老师走哪条路最近呢?为什么?
(学生会说出中间这条线路最快,但原因说不清楚。)
师:今天,这节课我们就要从数学的角度眼研究为什么走中间这条路最近。
2、大胆猜测
师:请同学们观察,在这幅图中,你可以发现几个三角形?
(学生边说边用手指出两个三角形)
师:在每个三角形里,老师从家直走到学校的路程是三角形的一条边,走旁边的路走过的路程又是这个三角形的什么呢?
师:根据大家的判断,你们猜猜看,三角形三条边之间会有怎样的关系呢?
(学生通过观察会猜出:三角形两边的和大于第三条边)教师板书。
师:是不是所有是三角形的三条边都有这样的关系呢?你们能肯定吗?
现在,我们就用数学方法来研究一下,看看三角形中,三边的关系是怎样的?
揭示课题:三角形的三边关系。
二、自主探究
1、 动手实验1:用三张纸条摆一个三角形。
师:同学们的桌上都有一些不同长度的纸条,请大家随意拿三张来摆三角形,看看有什么发现?(同桌合作)
三角形边的关系教案6
教学目标:
1.通过动手实践,自主探索,合作交流发现三角形任意两条边的和大于第三边。
2、能判断给定长度的三条线段是否能围成三角形,能运用三角形三边关系解决生活中简单的实际问题,感受到生活中处处有数学。
3.在探索体验的过程中,能进行简单、有条理的思考。通过学习,发展空间观念,体验成功的喜悦,激发学生学习数学的兴趣。
教学重点:理解、掌握“三角形任意两边之和大于第三边”的性质。
教学难点:引导探索三角形的边的关系,并发现“三角形任意两边的和大于第三边”的性质。教学准备:、不同长度纸条若干张、实验表格。
教学过程:
一、创设情境
a怎样的三张纸条才能摆成一个三角形?让我们再来做一个实验。
2、动手实验2:进一步探究怎样的三张纸条才可以摆成三角形。
师:每组同学任意选择下面三组中的任意一组纸条做进一步实验,并完成相应的实验记录。(1)4c5c9c(2)3c6c10c(3)6c7c8c
学生汇报展示:能或不能摆成三角形任意两边的和是否大于第三边(1)不能4+5=94+9>55+9>4发现:两边之和有时大于第三边,有时等于第三边,不能摆成三角形(2)不能6+10>33+10>63+6<10发现:两边之和有时大于第三边,有时小于第三边,不能摆成三角形(3)能6+7>86+8>77+8>6发现:任意两边之和大于第三边,能摆成三角形师:对于三角形的三边关系,怎样表达更严密?体会任意两边的含义。
三、拓展应用:
1、说一说老师为什么走中间的这条路最近?
2、判断:哪一组中的3根小棒可以摆成一个三角形?(单位:厘米)
(1)3,6,9(2)4,4,10
(学生通过比较任意两边之和是否大于第三边,来判断是否可以围成三角形,教师再让学生讨论交流好方法)
3、解决问题:
师:小明想要给他的小狗做一个房子,房顶的框架是三角形的,其中一根木条是3分米,另一根是5分米。
(1)第三根木条可以是多少分米?(取整数)
(2)第三边的木条的长度是a分米,那么a的取值范围是() 四、回顾反思: 同学们,今天学到了什么知识?你最大的收获是什么?还有哪些不懂的地方吗? [教学内容] 北师大版小学数学四年级下册《三角形三条边之间的关系》 [教学目标] 1、通过量一量、摆一摆、算一算等实验活动,探索并发现三角形任意两边之和大于第三边,并应用这关系解释一些生活现象,解决一些简单的生活问题。 2、在实验过程中培养学生的猜想意识、自主探索、合作交流的能力。 [教学重、难点] 探索并发现三角形任意两边之和大于第三边。 [教学准备] 学生、老师各准备几个长短不等的小棒、直尺、探究报告单。 [教学过程] 一、摆一摆,激发探究欲望 师:前一节课我们学习了三角形,给你三根小棒,谁能到黑板上围成一个三角形? (指两名同学到黑板上来。提供的小棒一组能摆成三角形,另一组摆不成三角形。) 在学生摆不出来时,引导学生发现不是任意三根小棒都能摆出三角形来。 师:若想再摆个三角形,你有解决的办法吗? 看来,要想摆成一个三角形,对三条边的长度是有要求的。这节课我们就来研究三角形边的关系。(板书课题) 师:谁来猜一猜,这三条边究竟有什么样的关系呢? 师:你的猜想是否正确呢,我们还是用实验来验证吧。 [反思]这个环节,我首先让学生围三角形,第一名学生不费吹灰之力很顺利地围成了三角形,第二名学生怎么也围不成。这样使学生在具体的操作过程中产生思维冲突,从而提出“数学问题”,有效地激发了学生的探究欲望。课一开始,就牢牢的抓住了学生的心,让学生饶有兴趣的投入到下一轮的学习中去。 二、操作验证,揭示三边关系 (一)分组研究,四人小组长拿出准备好的四组小棒。 出示实验要求: 1、量出每组小棒的长度。 2、将三根小棒首尾相接,看是否能围成三角形。 3、把任意两条边的长度加起来,再与第三边进行比较。(用式子表示) 4、小组讨论,你发现了什么?将实验结果填写在探究报告单上。 (二)小组汇报交流实验结果 结论:三角形任意两边的和大于第三边。(引导学生理解“任意”的意思) 再用这个结论解释实验中围不成三角形的原因。 [反思]:苏霍姆林斯基曾说:“在人的心理深处都有一种根深蒂固的需要,这就是希望自己是一个开拓者、研究者和探索者。而在儿童的精神世界中,这种需要特别强烈。”教学中,我有意设置这些动手操作,共同探讨的活动,既满足了学生的这种需要,由让学生在高昂的学习兴趣中学到了知识,体验到了成功。 三、应用与拓展 1、判断下面几组线段能否围成三角形,为什么? (引导学生理解快速判断的方法) (1)1厘米、3厘米、5厘米 (2)3厘米、5厘米、2厘米 (3)11厘米、6厘米、7厘米 [反思]:课堂练习的目的是为了让学生及时掌握知识,形成能力。教学中我充分注意到了这一点,即让学生用所学内容来说明为什么这一环节。同时我们引导学生发现,快速判断的方法,使学生在原来所学内容的基础上,对原知识又有发展,找到了最佳的判断方法。 2、小华上学走哪条路近?为什么?(引导学生从多角度解释) 书店 学校 小华家 [反思]:教材是学习的载体,我充分挖掘教材知识之间的联系,。这副情境图既能靠直觉来判断,又能用三角形三条边的关系来解释,还可以用“连接两点的线中,线段最短”来解释。这样既拓展了学生思维的空间,感受到解决问题方法多样性,又领悟到知识与实际的结合,从而使学生认识到生活中处处有数学。 3、一个三角形,其中两条边长是4厘米和6厘米,第三条边长是多少厘米? (引导学生探究第三边的取值范围) [反思]:此题设计目的是引导学生发现三角形第三边的取值范围是大于另两边的差,小于另两边的和。教学中开始学生逐渐答出了3厘米、4厘米、5厘米、6厘米、7厘米、8厘米、9厘米,接着就沉默了,我就提出了9.2厘米行不行?学生略一思考得出结论:行。于是他们的思维又活跃起来,9.6厘米、9.9厘米……当学生发现小数部分是无限的时,得出结论第三边小于10厘米大于3厘米就可以,于是我又提出问题:现在同学们找到的最小答案是3厘米,2.5厘米行不行?学生经过思考得出答案:第三边要小于10而大于2。由于时间关系,当时我有些着急,直接将我想要学生了解的“第三边的取值范围要大于另两边的差,小于另两边的和”这个结论直接说了出来,结果效果并不是太好。不如让学生自己课下探究“三角形两边之差与第三边的关系”更好。虽然此处处理并不是很恰当,但在这道题中师生、生生之间思维的碰撞,激发了学生探究的意识,培养了学生的质疑探究的能力。 4、儿童乐园要建一个凉亭,亭子上部是三角形木架,现在已经准备了两根3米长的木料,假如你是设计师第三根木料会准备多长?并说明理由。 (引导学生实际生活中要讲究美观、实用) [反思]此题是上一道题的延伸,是培养学生应用数学知识合理解决生活问题的能力。 5、用15根等长的火柴棒摆成的三角形中,最长边最多可以由几根火柴棒组成? [反思]这是一道要同学动手探究的问题,作为家庭作业学生更愿意做这样的题。 本课总结:同学们的表现非常棒,不仅能猜想,而且能通过实验进行验证,并利用所学知识解决实际问题 设计说明 1.三角形3条边的关系是在学生已经掌握了三角形的概念、三角形具有稳定性的基础上学习的。本节课主要学习三角形3条边的关系及应用三角形3条边的关系解决一些实际问题。通过本节课的学习,可以为学生空间观念的发展、数学活动经验的积累提供机会,也可以为学生推理意识的建立和对推理过程的理解打下基础,还可以为学生应用自己的方式有条理地表达推理过程作铺垫。 2.教学中,根据小学生喜欢玩的天性,首先设计让学生拼摆三角形的动手操作活动,使学生一开始就进入到学习状态。在教师的引导下,当学生发现三角形3条边的关系后,出示教材上的情境图,让学生学会应用所学知识解决实际问题,训练学生灵活应用知识的能力,使学生在解决问题的过程中理解并掌握本节课的重点。 3.在教学过程中,由行动生问题,由问题生假设,由假设生验证,由验证生新价值,让学生在实践中自主学习、主动探究,从而提高学生的学习能力和创造能力。 课前准备 教师准备多媒体课件 学生准备长度不同的小棒 教学过程 ⊙情境导入 1.请同学们回忆一下,什么样的图形是三角形?[由3条线段围成的图形(每相邻两条线段的端点相连)叫做三角形]如果用一根小棒代表一条线段,围成一个三角形需要几根小棒?任意给你3根小棒,你能围成一个三角形吗? 2.同学们的意见不统一,究竟谁说得对呢?我们亲自用小棒摆摆看,请大家打开学具袋,从中任意取出一些小棒试试看。可以换小棒多试几组,注意小棒要首尾顺次相连。 设计意图:通过“3根小棒能不能围成一个三角形”这一问题,引发学生的认知冲突,激发学生探究三角形三边关系的学习兴趣。 ⊙探究新知 1.拼摆尝试。 师:任意取3根小棒,看能不能摆成三角形。(学生任意取3根小棒试着摆一摆,多摆几次,记录下来) 师:你发现了什么?(3根小棒有的能摆成三角形,有的不能摆成三角形) 师:在什么情况下3根小棒能摆成三角形?在什么情况下3根小棒不能摆成三角形?让我们用手中的学具通过小组合作来寻找答案。 2.合作实践。(出示课堂活动卡) 3.小组汇报。 预设 小组1:通过用小棒摆三角形,借助测量数据、分析数据,我们发现只有当三角形的其中两边的和大于第三边的时候才能摆成三角形。 小组2:我们小组发现,当三角形的任意两边的和小于或等于第三边的时候就不能摆成三角形。 (教师板书:三角形任意两边的和大于第三边) 4.我们在判断3条线段能否围成一个三角形时,是不是一定要写出3个算式才能判断呢? 讨论后得到以下结论:利用“两短边的和大于长边”就能判断3条线段能否围成一个三角形。 5.教学教材62页例3。 通过刚才的学习,同学们不仅掌握了判断3条线段能否围成一个三角形的方法,还找出了最佳的判断方法。请同学们观察小明上学的示意图,如果小明想走最短的路上学,你认为他会选择走哪条路?(他会选择走中间这条路)你是怎样判断的? 预设 生1:因为中间这条路是直的,其他的路是弯的,所以走中间这条路最近。 生2:如果小明走通过邮局到学校的这条路上学,小明家、邮局、学校则构成一个三角形,由三角形的3条边的关系可知,小明家到邮局,邮局到学校这两条边的和一定大于第三边,即中间这条路,所以走中间这条路最近。 教师小结:两点间所有连线中线段最短,这条线段的长度叫做两点间的距离。 设计意图:通过拼摆三角形的活动,使学生发现三角形的3条边的关系,并能以此为依据,解决生活中的实际问题,体现了数学在生活中的应用价值。 【教材分析】 本课是在学生初步了解三角形定义的基础上,让学生进一步理解三角形的特征,即“三角形任意两边之和大于第三边”,加深学生对三角形的认识,同时也为今后学习三角形和四边形的联系和区别打下基础。三角形边的关系的定理主要提供了判断三条线段能否组成三角形的依据,熟练灵活地运用三角形三边关系有助于提高学生全面思考问题的能力。教材积极创设了动手操作的情境,力求让学生在活动中感知、体会并进行归纳总结。同时,也让学生对演绎推理和反证法有初步的了解。 这节课力求让学生在动手操作与引申思考中,经历“发现问题—总结规律—解决问题—实践应用”的过程,真正放手让学生去“做数学”,经历“数学化”的过程。 在学具的准备上,运用了胶片上画线段的方法来摆三角形,尽可能地减小了操作中的误差。 【学生分析】 对于三角形,学生并不陌生,通过前面的学习,学生已经初步认识了三角形,知道三角形有三条边、三个顶点和三个角,以及三角形稳定性的知识,这些都是学生进一步进行学习的基础。学生乐于动手,喜欢实践,并在前几年的学习中,掌握了一定的实践方法和思考方式,同时比较善于发现和总结,这也将为本节课的学习做好铺垫。 【教学过程】 一、创设生活情境,揭示课题 (课件出示:教师上班路线图) 师:老师从家里出发到学校上班有三条路可以走,你认为老师走哪条路近呢? 生1:我认为老师走第二条路近,因为第一条和第三条路都是弯的,只有第二条路是直的。 生2:我也认为老师走第二条路近。 师:是啊,弯来弯去的线总是比直的线要长。现在老师请同学们再仔细观察,连接老师家、公园和学校三个地方,接近一个什么图形?连接老师家、国贸大厦和学校这三个地方,又接近一个什么图形? 生:三角形。 师:老师走一、三两条路就好比走了三角形的两条边,而走第二条路好比走了三角形的一条边,三角形的三条边有什么关系呢?我们是否可以从三角形的三条边的关系来解释老师上班走哪条路近的问题呢?这节课,我们就来研究三角形边的关系。(板书课题:三角形边的关系) 二、开展探索活动,体验边的关系 1.发现问题。 师:老师手里有一根吸管,想把它随意剪成三段,什么是随意呢? 生1:随自己的意思,可长可短。 师:把这根吸管随意剪成三段,能围成三角形吗? 生2:能。 生3:不一定。 师:每人从材料袋中,取出一根吸管来剪一剪、围一围。 (学生活动,教师巡视了解情况,有的围成,有的围不成) 师:看来不是随意剪成三段就能围成三角形的,这里面肯定有学问,大家想研究吗?(想)那谁愿意把没围成的作品提供给大家研究?(一学生将作品呈上) 师:有谁觉得能围成,想来帮帮他?(一学生上来帮助,教师也帮助围,还是围不成) 师:怎么会围不成呢?是什么原因?请同桌同学小声商量一下。 生4:因为其中的两根吸管太短了,再长一些就围得成了。 师:同学们认为两根吸管的长度和小于第三根所以围不成,那么,两根吸管的长度和多长时才可以围成呢? 2.进行猜想。 生1:我认为当两根吸管的长度和等于第三根时才可以围成。(板书) 生2:我认为当两根吸管的长度和大于第三根时才可以围成。(板书) 生3:我认为要随便的两根吸管的长度和都大于第三根时才可以围成。(板书:随便) 师:这些都只是同学们的猜想,这些猜想是否正确呢?当我们在学习中遇到这种情况时,可以怎么办? 生:可以做实验来验证一下。 3.实验验证。 师:在做实验前,老师还有些不放心,“两根吸管的长度和等于第三根”这个实验的材料怎么找呢? 生1:可以量一量,剪一剪。 生2:把一根吸管对折剪开,其中的一段再*分成两段。 生3:拿三根一样长的吸管就可以了。 师:这样的话,两根吸管的长度和还等于第三根吗? 生4:大于第三根,可以用做第二个实验的材料。 师:现在就请同桌合作完成实验,特别注意是否要“随便的两根”。 (学生实验,教师巡视指导) 师:实验结束了,我们来开个实验结果发布会吧!谁愿意第一个上来发布实验结果。 生5:我们做第一个实验。先挑选两根一样长的吸管,并把其中一根*均剪成两段,我们发现两根吸管的长度和等于第三根时不能围成三角形。(学生边说边演示围的过程) 师:大家的实验结果与他们一样吗? 生6:我们的实验结果是:两根吸管的长度和等于第三根时能围成三角形。(学生上台演示围的过程) 生7:老师,他们的实验材料有问题,两根吸管的长度和已经大于第三根了,所以这个实验的结果是错的。 师:数学是非常严谨的学科,来不得半点马虎,我们一定要认真仔细。 生8:老师,我们的实验结果也是围成的。(学生上台演示围的过程) 师:对于他们这一组的实验情况,同学们有什么想说的吗? 生9:老师,他们在围的时候,两根吸管的端点根本没有接触,其实是没有围成三角形。 师:老师请你们再试试好吗?(这一组学生按要求再试了一次,果然围不成) 师:现在你们想重新发布实验结果吗? 生10:两根吸管的长度和等于第三根时不能围成三角形。 师:虽然这组同学的实验有问题,但他们敢于发表自己的观点来解决疑问,学习就是要有这种精神才会进步。 师:谁来发布第二个实验结果? 生11:当两根吸管的长度和大于第三根时可以围成三角形。(学生边说边演示围的过程,大部分学生表示赞同) 生12:我觉得你说的不对。这是我开始没有围成三角形的那三根吸管,其中一根短的吸管与一根长的吸管的长度和也是大于第三根的,可是却围不成三角形。所以,要随便的两根吸管的长度和都大于第三根时才可以围成三角形。(全班学生都赞同他的想法) 师:你想问题很全面,老师和同学都很佩服你,真了不起!现在谁能把实验的结果再来发布一下? 生13:任何两根吸管的长度和大于第三根时,可以围成三角形。 师:我们可以把“随便”、“任何”说成“任意”。(板书:任意) 4.得出结论。 师:那么,对于已经围成的三角形,是否意味着任意两边的和都大于第三边呢?请大家拿出课前画好的三角形量一量、算一算。 生1:我量出三角形的三条边分别是3厘米、2厘米、2.6厘米,经过计算发现,三角形任意两边的和都大于第三边。 一、教学内容与学情分析; 本课的教学内容是人教版四年级下册第五单元第一课时《三角形的认识》。 学生通过第一学段和四年级上册的学习,对三角形已经有了直观的认识,能够从*面图形中分辨出三角形,认识了线段,学习了垂直,能从直线外一点画出这条直线的垂线。在此基础上,本课时安排了三角形各部分名称,定义,高和底等教学内容。为学习三角形的面积算法和各种图形打下基础。 二、教学目标 (一)知识与技能 在操作活动中,概括三角形的特征,认识各部分名称以及底和高的含义,会在三角形内画高,用字母表示三角形。 (二)过程和方法 在操作活动、概括中,积累认识图形的经验和方法。 (三)情感态度和价值观 培养学生学习数学的兴趣。 三、教学重难点 教学重点:理解三角形的概念,认识三角形各部分的名称,知道三角形的底和高 教学难点:会画三角形的高 四、教学准备 课件、实物投影 五、过程设计 一、欣赏图片,导入新课 师:同学们,老师今天带来了很多美丽的建筑图片,我们一起来欣赏一下。 师:谁能说说这些图片中都有哪种*面图形? 揭题:是的,每张图片中都含有三角形。三角形的奥秘非常多,那么它在我们的生活中究竟有什么作用呢?今天这节课我们就一起走进三角形,揭开三角形神秘的面纱。(板书课题:三角形的`认识) [设计意图:通过建筑图片,增强学生对数学源于生活的认识,激发学生学习的兴趣] 二、自主探究,学习新知 1、三角形的定义 (1)请同学们翻开书本第60页,自学有关三角形的内容。 (2)师:自学完了,如果现在让你画一个三角形,你会画么? 指名学生到黑板上画三角形,并介绍一下画的三角形有什么特点。 在学生说的时候板书:3个角,3条边,3个顶点 并提问:对他的发言你还有什么需要补充的吗? (4)师:这些是同学们刚才通过自学知道的知识,那你觉得到底什么样的图形才能叫做三角形呢? 指名不同的学生说。 刚才有同学说到:三条线段围成的图形叫三角形。(课件出示) 师:这句话里哪个词是关键? 师:三条线段围成是怎么样的?(出示:每相邻两条线段的端点相连。) 对这句话你们都理解了吗?那老师就要来考考你们了。 教师举出反例让学生判断。 师:现在你认为到底怎样的图形才叫三角形呢? [设计意图:帮助学生较好地理解“线段”、“围成”的含义,培养学生的抽象概括能力和语言表达能力] (5)师:你们每人都画了一个三角形,黑板上现在也有一个三角形,这么多的三角形,我们该怎么去区分它们呢?你们能给它们取个名字吗?(给它们标上字母) 师:老师给黑板上的三角形中的每个顶点分别标上ABC,那么这个三角形就记作三角形ABC。 在三角形ABC中,我们把这个点叫做顶点A,那么其他两个就是?这条边叫AB边,那么这两条是?请你想一想,这三个顶点,分别对应哪条边。 2、三角形的高 (1)师:看黑板上的三角形,如果小红家刚好就在点A,BC是一条小河,小红要去提水,你认为走那条路比较近? 师:是走AB这条路吗?还是走AC这条路呢?其实啊,这两条路都比较远,你能想到最近的路在哪里吗? 师:对了,就是从这个顶点出发,作对边的垂直线段。这条路才是最近的。 师:谁能上来把它画出来?指名,要求学生边画边说画垂线段的过程。 先把三角尺的一条直角边和BC这条边重合,使三角尺的另一条直角边经过点A,再沿着这条直角边画一条垂直的线段。(当学生说的不完整的时候请其他学生补充) 师:让我们重温一下刚才画垂线段的过程(课件演示) 师:像这样,从三角形的一个顶点到它的对边做一条垂线,顶点和垂足之间的线段叫三角形的高,这条对边叫做三角形的底。 师:黑板上这条垂直线段就叫做三角形的高,与高垂直的BC边就叫做它的底。通常,三角形的高要画成虚线,还要标上直角符号。(板书:高、底) [设计意图:通过创设具体情境,然后学生借助已有的知识和经验解决具体的问题,形成知识迁移] (2)师:你会画高吗?请同学们在刚才自己画的三角形中画高。 (3)师出示判断题,哪些是三角形的高?刚才老师看到有同学的高是这样画的,他们画的对吗?为什么? 师:第四个图形画的是高吗?想想看,它是怎么画出来的。这时候谁是底? 师:为什么刚才把BC叫底,现在却把AB叫底呢? 师:刚才提到的过一个顶点可以向对边引出一条高,想一下,在这个三角形中你还能画出其他的高吗? 师:想想看,过点B如何画AC边的高?方法也一样,把三角尺的直角边和AC边重合,经过点B就能画出这条高,这时AC边就是三角形的底。(课件演示)看来在一个三角形中能画几条高?(从3个不同的顶点出发能画出3条不同的高) 师:你还能在自己的三角形中画出其他两条高呢? [设计意图:让学生初步感受三角形的底和高的相互依存关系] 三、应用拓展,提高技能 (1)师(课件出示):想象一下,这些三角形的高在哪里? 师:课件出示前面三个图形的高,这些高有什么变化?这是什么原因呢?(为什么高逐渐向右移动) 生:顶点向右移动。 师:如果顶点继续向右移动,那么最后一个三角形的高应该画在什么地方呢? 生:与另一条边重合了。 师:这是为什么呢?(因为是直角三角形)这里AC是高,哪条是底呢? 师:刚才我们知道了三角形都有三条高,你还能找出这个三角形的其他两条高吗?(学生找出) 师:原来直角三角形的两条直角边就是对应的两组底和高。 (2)师:现在老师把这四个图形放在一起,想一想,如果顶点继续向右移动,会出现怎样的三角形,高会出现在什么地方呢?(课件出示一个钝角三角形) 学生先想象,再指出高的位置。 师:如果顶点向左边移动呢?(课件出示)高又会出现在什么地方? 学生想象后,再指出。 师:请同学们仔细观察大屏幕,这些三角形有什么共同之处?(板书:同底等高) 师:想一下,为什么这些高的长度都相等呢?(顶点在*行线上移动) 师:如果顶点不在*行线上移动,他们的高还会一样吗? 学生回答,师演示。看来高的位置跟什么有关?是呀,同学们高是从顶点画出来的。 (3)师(隐去三角形,留下顶点和高、底的虚线):如果以顶点到垂足之间的线段为三角形的一条高,你能想象出这个三角形吗?它的底在哪里? 师:隐去底,现在你还能想象出三角形的底在哪里吗?请你画在练习纸上。 学生画,展示学生作品。 像这样只给指定高的三角形,你能画多少个三角形?那如果高确定了,底也确定了,现在你能画出几个三角形呢? [设计意图:让学生再次感受三角形的底和高的相互依存关系] 四、再现知识,总结反思 师:这节课你有什么收获,对于三角形的知识,你还有那些问题和疑惑? 这节课我们明确了三角形的特征:三个角、三条边和三个顶点,知道了高是从顶点出发画出来的,研究了顶点的特性,下节课我们还要继续探究三角形的其他奥秘。 六、作业设计 书本第65页练习十五第一题 七、板书设计 三角形的认识 3个角,3条边,3个顶点 三条线段围成的图形叫三角形 高底 八、教学反思 如何正确地理解并画出三角形的高是本节课的教学难点。为什么学生画高的时候会经常出现错误呢?分析思考后我发现很多学生都不能正确地找到顶点及相应的对边,学生的操作是在模仿中进行的,所以我让学生帮小红找最短的路径,让学生借助已有的知识和经验解决具体的问题,在具体情境中逐步理解三角形“高”和“底“的定义。然后逐步深入,让学生感悟三角形的底和高的相互依存关系,最后隐去三角形,和底让学生想象三角形的底在哪里,再次感受三角形的底和高的相互依存关系。 知识点 1、任意一个三角形内角和等于180度。 2、三角形任意两边之和大于第三边。 3、能应用三角形内角和的性质和三角形边的关系解决一些简单的问题。 4、四边形的内角和是360° 5、用2个相同的三角形可以拼成一个*行四边形。 6、用2个相同的直角三角形可以拼成一个*行四边形、一个长方形、一个大三角形。 7、用2个相同的等腰的直角的三角形可以拼成一个*行四边形、一个正方形。一个大的等腰的直角的三角形。 练习题 1.等腰三角形的一个内角是94°,那么它的另外两个内角是()和()。 2.三角形的两个内角之和是85°,第三个角是()°,这个三角形是()三角形。 3.一个直角三角形的一个锐角是45°,另一个内角是(),按边分这是()三角形。 4.三角形最多()个直角,最多()个钝角,最少()个锐角。 5.已知等腰三角形的一个内角是80°,另外两个内角分别是()、()或()、()。 参考答案 1.等腰三角形的一个内角是94°,那么它的另外两个内角是(43)和(43)。 2.三角形的两个内角之和是85°,第三个角是(10)°,这个三角形是(等腰)三角形。 3.一个直角三角形的一个锐角是45°,另一个内角是(45°),按边分这是(等腰)三角形。 4.三角形最多(1)个直角,最多(1)个钝角,最少(2)个锐角。 5.已知等腰三角形的一个内角是80°,另外两个内角分别是(50°)、(50°)或(80°)、(20°)。 ——全等三角形教案3篇 一、教材分析 (一)本节内容在教材中的地位与作用。 对于全等三角形的研究,实际是*面几何中对封闭的两个图形关系研究的第一步。它是两三角形间最简单、最常见的关系。本节《探索三角形全等的条件》是学生在认识三角形的基础上,在了解全等图形和全等三角形以后进行学习的,它既是前面所学知识的延伸与拓展,又是后继学习探索相似形的条件的基础,并且是用以说明线段相等、两角相等的重要依据。因此,本节课的知识具有承上启下的作用。同时,人教版教材将“边角边”这一识别方法作为五个基本事实之一,说明本节的内容对学生学习几何说理来说具有举足轻重的作用。 (二)教学目标 在本课的教学中,不仅要让学生学会“边角边”这一全等三角形的识别方法,更主要地是要让学生掌握研究问题的方法,初步领悟分类讨论的数学思想。同时,还要让学生感受到数学来源于生活,又服务于生活的基本事实,从而激发学生学习数学的兴趣。为此,我确立如下教学目标: (1)经历探索三角形全等条件的过程,体会分析问题的方法,积累数学活动的经验。 (2)掌握“边角边”这一三角形全等的识别方法,并能利用这些条件判别两个三角形是否全等,解决一些简单的实际问题。 (3)培养学生勇于探索、团结协作的精神。 (三)教材重难点 由于本节课是第一次探索三角形全等的条件,故我确立了以“探究全等三角形的必要条件的个数及探究边角边这一识别方法作为教学的重点,而将其发现过程以及边边角的辨析作为教学的难点。同时,我将采用让学生动手操作、合作探究、媒体演示的方式以及渗透分类讨论的数学思想方法教学来突出重点、突破难点。 (四)教学具准备,教具: 相关多媒体课件;学具:剪刀、纸片、直尺。画有相关图片的作业纸。 二、教法选择与学法指导 本节课主要是“边角边”这一基本事实的发现,故我在课堂教学中将尽量为学生提供“做中学”的时空,让学生进行小组合作学习,在“做”的过程中潜移默化地渗透分类讨论的数学思想方法,遵循“教是为了不教”的原则,让学生自得知识、自寻方法、自觅规律、自悟原理。 三、教学流程 (一)创设情景,激发求知欲望。 首先,我出示一个实际问题: 问题:皮皮公司接到一批三角形架的加工任务,客户的要求是所有的三角形必须全等。质检部门为了使产品顺利过关,提出了明确的要求:要逐一检查三角形的三条边、三个角是不是都相等。技术科的毛毛提出了质疑:分别检查三条边、三个角这6个数据固然可以。但为了提高我们的效率,是不是可以找到一个更优化的方法,只量一个数据可以吗?两个呢? 然后,教师提出问题:毛毛已提出了这么一个设想,同学们是否可以和毛毛一起来攻克这个难题呢? 这样设计的目的是既交代了本节课要研究和学习的主要问题,又能较好地激发学生求知与探索的欲望,同时也为本节课的教学做好了铺垫。 (二)引导活动,揭示知识产生过程。 数学教学的本质就是数学活动的教学,为此,本节课我设计了如下的系列活动,旨在让学生通过动手操作、合作探究来揭示“边角边”判定三角形全等这一知识的产生过程。 活动一:让学生通过画图或者举例说明,只量一个数据,即一条边或一个角不能判断两个三角形全等。 活动二:让学生就测量两个数据展开讨论。先让学生分析有几种情况:即边边、边角、角角。再由各小组自行探索。同样可以让学生举反例说明,也可以通过画图说明。 活动三:在两个条件不能判定的基础上,只能再添加一个条件。先让学生讨论分几种情况,教师在启发学生有序思考,避免漏解。 教师提出3个角不能判定两三角形全等,实质我们已经讨论过了。明确今天的任务:讨论两条边一个角是否可以判定两三角形全等。师生再共同探讨两边一角又分为两边一夹角与两边一对角两种情况。 活动四:讨论第一种情况:各小组每人用一张长方形纸剪一个直角三角形(只用直尺和剪刀),怎样才能使各小组内部剪下的直角三角形都全等呢?主要是让学生体验研究问题通常可以先从特殊情况考虑,再延伸到一般情况。 活动五:出示课本上的3幅图,让学生通过观察、进行猜想,再测量或剪下来验证。并说说全等的图形之间有什么共同点。 活动六:小组竞赛:每人画一个三角形,其中一个角是30°,有两条边分别是7cm、5cm,看哪组先完成,并且小组内是全等的。这样既调动了学生的积极性,又便于发现边角边的识别方法。 最后教师再用几何画板演示,学生进行观察、比较后,师生共同分析、归纳出“边角边”这一识别方法。 若有小组画成边边角的形式,则顺势引出下面的探究活动。否则提出:若两个三角形有两条边及其中一边的对角对应相等,则这两个三角形一定全等吗? 活动七:在给出的图上,让学生自主探究(其中另一条边为5cm),看画出的三角形是否一定全等。让学生在给出的图上研究是为了减小探索的麻木性。 教师用几何画板演示,让学生在辨析中再次认识边角边。同时完成课后练习第一题。 (三)例题教学,发挥示范功能 例题教学是课堂教学的一个重要环节,因此,如何充分地发挥好例题的教学功能是十分重要的。为此,我将充分利用好这道例题,培养学生有条理的说理能力,同时,通过对例题的变式与引伸培养学生发散思维能力。 首先,我将出示课本例1,并设计下列系列问题,让学生一步一步地走向“知识获得与应用”的理想彼岸。 问题1:请说说本例已知了哪些条件,还差一个什么条件,怎么办?(让学生学会找隐含条件)。 问题2:你能用“因为……根据……所以……”的表达形式说说本题的说理过程吗? 问题3:△ADC可以看成是由△ABC经过怎样的图形变换得到的? 在探索完上述3个问题的基础上,对例题作如下的变式与引伸: △ABC与△ADC全等了,你又能得到哪些结论?连接BD交AC于O,你能说明△BOC与△DOC全等吗?若全等,你又能得到哪些结论? 这样设计的目的在于体现“数学教学不仅仅是数学知识的教学,更重要的发展学生数学思维的教学”这一思想。 在例题教学的基础上,为了及时的反馈教学效果,也为提高学生知识应用的水*,达到及时巩固的目的,我设计了如下两个练习: (1)基础知识应用。完成教材P139练一练2。 (2)已知如图:请你添加一些适当的条件,再根据SAS的识别方法说明两个三角形全等。对学生进行逆向思维训练,同时让学生发现对顶角这一隐含条件。 (四)课堂小结,建立知识体系。 (1)本节课你有哪些收获:重点是将研究问题的方法进行一次梳理,对边角边的识别方法进行一次回顾。 (2)你还有哪些疑问? 【教学目标】 1、使学生理解边边边公理的内容,能运用边边边公理证明三角形全等,为证明线段相等或角相等创造条件; 2、继续培养学生画图、实验,发现新知识的能力。 【重点难点】 1、难点:让学生掌握边边边公理的内容和运用公理的自觉性; 2、重点:灵活运用SSS判定两个三角形是否全等。 【教学过程 】 一、创设问题情境,引入新课 请问同学,老师在黑板上画得两个三角形,△ABC与△DEF全等吗?你是如何判定的。 (同学们各抒己见,如:动手用纸剪下一个三角形,剪下叠到另一个三角形上,是否完全重合;测量两个三角形的所有边与角,观察是否有三条边对应相等,三个角对应相等。) 上一节课我们已经探讨了两个三角形只满足一个或两个边、角对应相等条件时,两个三角形不一定全等满足三个条件时,两个三角形是否全等呢?现在,我们就一起来探讨研究。 二、实践探索,总结规律 1、问题1:如果两个三角形的三条边分别相等,那么这两个三角形会全等吗?做一做:给你三条线段,分别为,你能画出这个三角形吗? 先请几位同学说说画图思路后,教师指导,同学们动手画,教师演示并叙述书写出步骤。 步骤: (1)画一线段AB使它的长度等于c。 (2)以点A为圆心,以线段b(3cm)的长为半径画圆弧;以点B为圆心,以线段a(4cm)的长为半径画圆弧;两弧交于点C。 (3)连结AC、BC。△ABC即为所求 把你画的三角形与其他同学的图形叠合在一起,你们会发现什么? 换三条线段,再试试看,是否有同样的结论? 请你结合画图、对比,说说你发现了什么? 同学们各抒己见,教师总结:给定三条线段,如果它们能组成三角形,那么所画的三角形都是全等的.。这样我们就得到判定三角形全等的一种简便的方法:如果两个三角形的三条边分别对应相等,那么这两个三角形全等。简写为边边边,或简记为。 2、问题2:你能用相似三角形的判定法解释这个(SSS)三角形全等的判定法吗? (我们已经知道,三条边对应成比例的两个三角形相似,而相似比为1时,三条边就分别对应相等了,这两个三角形不但形状相同,而且大小都一样,即为全等三角形。) 3、问题3、你用这个SSS三角形全等的判定法解释三角形具有稳定性吗? (只要三角形三边的长度确定了,这个三角形的形状和大小就完全确定了) 4、范例: 例1如图,四边形ABCD中,AD=BC,AB=DC,试说明△ABC≌△CDA。解:已知AD=BC,AB=DC,又因为AC是公共边,由全等判定法,可知 △ABC≌△CDA 三、加强练习,巩固知识 1、如图△ABC≌△DCB全等吗?为什么? 2、如图,AD是△ABC的中线相等吗?请说明理由。 四、小结 本节课探讨出可用(SSS)来判定两个三角形全等,并能灵活运用(SSS)来判定三角形全等。三个角对应相等的两个三角不一定会全等。 五、作业 一、 引言 根据《全日制义务教育数学课程标准》具体目标,结合学生已有的知识经验和认知水*,提供具有探究性的问题,让学生主动参与到解决问题的数学活动中,理性思考、大胆猜测,合理推断,从何培养学生的逻辑思维能力,发展学生的数学观念和数学思想,使学生形成良好的思维品质,达到启迪思维、开发智力的目的。此案例就构造三角形全等为例,谈谈在课堂教学中如何发展学生的直觉思维,培养其创新意识。 二、 全等三角形知识点的地位和作用 全等三角形体现的是一种十分重要的保距变换,许多图形中线段之间,角之间的相互关系经常通过三角形全等来判断、得出,三角形全等还是基本尺规作图的根本依据。由于全等三角形的判定及对全等三角形边、角之间的关系处理涉及推理,因此通过学习全等三角形知识对培养学生的逻辑推理和表达能力有着非常重要的作用。 三、全等三角形判定教学例子 假设情景: 某次组织学生参加生日聚会,需要裁剪小旗帜,如何让小旗帜和第一个剪裁的大小完全相同呢? 由学生尝试把实际问题转化为数学问题:怎样画一个三角形与已知三角形全等?在解决这个问题的过程中,鼓励学生大胆猜想,激发同学们的主动性和创造性。学生可能会提出:测出参照三条边的长度,或量出三个角的度数,或测量一条边、一个角的方案等。对于这些方案教师不急于评价,先引导学生分析各种方案的共同特点:都是先通过已知三角形的边、角的条件画出一个三角形与原三角形全等;不同点是所需条件的个数不同。学生的思维在此产生碰撞:谁的想法可行呢?要使两个三角形全等到底需要满足哪些条件?进一步明确本节课研究的方向,引出课题。 学生在探究过程中会根据已有的知识积累,利用“几何画板”作图探究,举出反例来说明已知一个条件或两个条件画出的三角形与已知三角形不一定全等,这时教师鼓励学生画出尽可能类型的反例,并引导学生将举出的反例进行分类,初步体验分类的数学思想,为下一步已知三个条件画出三角形与已知三角形全等打下基础。 在讨论过程中,教师以合作者的身份深入到小组中,与同学交流,了解学生的探究过程并给予适当点拨,然后全班交流小组讨论结果,归纳出可能的分类情况: 按已知三角形边和角的个数可分为:三边、三角、两角一边、两边一角。 个别小组可能会提出根据边和角的位置关系,两边一角可继续分为两边及夹角和两边及一边对角,两角一边可继续分为两角及夹边和两角及一角对边。 对学生的严谨求实的学习态度教师要给予充分的可定和赞赏。 在此问题的`解决过程中,不仅训练了学生将知识分类,并使学生充分感受到团队合作的重要意义和交流沟通的重要性。在探索过程中,对于三边、三角、两角及夹边、两边及夹角这四种情况学生很容易验证,而只有两角及一角对边和两边及一边对角条件是讨论的焦点。 这时,教师留给学生充分的思考时间,经过交流,学生能够得出利用三角形的内角和定理,两角及一角对边的条件可以转化为两角及夹边的情况。而在画两边及一边对角的三角形时,学生可能得出这样几种结果: (1)画出的三角形与原三角形全等;(2)画出的三角形与原三角形不全等;(3)画出了两个三角形; 此时,留给学生更多的时间,充分讨论,达成共识:此条件能够得到两个不同的三角形;为突破该难点,教师利用画板展示作图过程,深入分析产生两个三角形的原因,使学生进一步明确两边及一边对角不能作为判定三角形全等的条件。在此过程中,教师对个别学生富有个性的学习表现给予肯定和激励,让同学们感受到成功的喜悦。 难点的突破力求发挥自主学习的优越性,放手让学生去探索,在师生互动、生生互动的氛围中使学生思维的灵活性和创造性得到发展。 最后展示实验的结果,得出一般结论:根据三边、两边及夹角、两角及夹边、两角及一角对边这四种条件画出的三角形与原三角形全等。 四、全等三角形的教学反思 在三角形全等的教学过程中,因有实例比较,学生对三角形全等的概念理解应该不成问题,从整个初中学习过程中来说,三角形全等知识学习是学好其它几何知识的起步点,在八和九年级几何学习中都离不开三角形全等有关知识,如旋转、轴对称、园、坐标系等,但在学习中学生也存在两个主要问题。 (1)三角形全等的说理表达 逻辑语言表达这个过程的训练需要逐步进行,也就是题目要简单点,叙述过程从两句即一个因果开始训练书写,再到两个因果训练,两个因果的书写过程时间要长一些,因为两个因果会写了,再多几个因果也不太会出问题了,当然在注意书写要求的同时还要强调理解逻辑关系 (2)几何逻辑思维能力培养 三角形全等知识在培养学生逻辑语言的同时,更重要的是在培养学生的逻辑思维能力、空间想象能力,在这一点上学生间的差异比较明显,要缩小差距共同提高,培养的关键点是要让学生在头脑中逐渐有几何图形的图形感,能在大脑中思考几何图形中的问题,要做到这一点,第一步要让学生多用实物例子,多动手操作,多回忆见到过的类似图形,培养图形感,第二步要做到能在复杂图形中分解目标图形,学会动态思维,只有这样才能在复杂图形中捕捉、筛选目标图形,培养空间思维能力。 ——《三角形的面积计算》教案 《三角形的面积计算》教案 作为一名辛苦耕耘的教育工作者,时常会需要准备好教案,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。那么大家知道正规的教案是怎么写的吗?下面是小编整理的《三角形的面积计算》教案,仅供参考,大家一起来看看吧。 教学目标 1.理解三角形面积公式的推导过程,正确运用三角形面积计算公式进行计算. 2.培养学生观察能力、动手操作能力和类推迁移的能力. 3.培养学生勤于思考,积极探索的学习精神. 教学重点 理解三角形面积计算公式,正确计算三角形的面积. 教学难点 理解三角形面积公式的推导过程. 教学过程 一、复习铺垫. (一)教师提问:我们学过了哪些*面图形的面积?计算这些图形面积的公式是什么? 教师:今天我们一起研究“三角形的面积”(板书课题) (二)共同回忆*行四边形面积的计算公式的推导过程. 二、指导探索 (一)数方格面积. 1.用数方格的方法求出第69页三个三角形的面积.(小组内分工合作) 2.演示课件:拼摆图形 3.评价一下以上用“数方格”方法求出三角形面积. (二)推导三角形面积计算公式. 1.拿出手里的*行四边形,想办法剪成两个三角形,并比较它们的大小. 2.启发提问:你能否依照*行四边形面积的方法把三角形转化成已学过的图形,再计 算面积呢? 3.用两个完全一样的直角三角形拼. (1)教师参与学生拼摆,个别加以指导 (2)演示课件:拼摆图形 (3)讨论 ①两个完全一样的直角三角形拼成一个大三角形(第三种拼法)能帮助我们推导出 三角形面积公式吗?为什么? ②观察拼成的长方形和*行四边形,每个直角三角形的面积与拼成的*行 四边形 的面积有什么关系? 4.用两个完全一样的锐角三角形拼. (1)组织学生利用手里的学具试拼.(指名演示) (2)演示课件:拼摆图形(突出旋转、*移) 教师提问:每个三角形的面积与拼成的*行四边形的面积有什么关系? 5.用两个完全一样的钝角三角形来拼. (1)由学生独立完成. (2)演示课件:拼摆图形 6.讨论: (1)两个完全相同的三角形都可以转化成什么图形? (2)每个三角形的面积与拼成的*行四边形的面积有什么关系? (3)三角形面积的计算公式是什么? (4)如果用S表示三角形面积,用a和h表示三角形的底和高,那么三角形面积的计算公式可以写成什么? (三)教学例1. 例1.一种零件有一面是三角形,三角形的底是5.6厘米,高是4厘米.这个三角形的面积是多少*方厘米? 1.由学生独立解答. 2.订正答案(教师板书) 5.6×4÷2=11.2(*方厘米) 答:这个三角形的面积是11.2*方厘米. 三、质疑调节 (一)总结这一节课的收获,并提出自己的问题. (二)教师提问: (1)要求三角形面积需要知道哪两个已知条件? (2)求三角形面积为什么要除以2? (3)把三角形转化成已学过的图形,还有别的方法吗? (演示课件:三角形剪拼法) 四、反馈练习 (一)下面*行四边形的面积是12*方厘米,求画斜线的三角形的面积. (二)计算下面每个三角形的面积. 1.底是4.2米,高是2米; 2.底是3分米,高是1.3分米; 3.底是1.8米,高是.1.2米; 五、板书设计 教案点评: 本节课的主要特点是:1、重视知识形成的过程,注意引导学生积极参与教学过程,突出了以学生为主体,老师为主导的教学指导思想。2、注意渗透转化的思维方法和*移的思想,抓住新旧知识的衔接点和新知的生长点,形成良好的认知结构,同时培养了学生的逻辑思维能力。 探究活动 三角形面积计算公式 活动目的 1.掌握三角形面积公式的推导过程. 2.培养学生主动探究知识的能力. 活动准备 若干张长方形和三角形白纸. 活动过程 1.引导学生以长方形的一条边为三角形的底,画一个最大的三角形,观察三角形面积与长方形面积的关系. 2.引导学生用两个同样的三角形沿着其中一个三角形的高剪开,拼成一个长方形,观察三角形面积与长方形面积的关系. 3.启发学生将三角形折成两个长方形,并观察三角形面积与长方形面积的关系. 4.分小组讨论这种方法与新课所学三角形面积公式推导过程的异同点. 重点难点 使学生进一步熟悉三角形面积的计算公式,熟练地计算不同三角形的面积 教学准备(含资料辑录或图表绘制) 教和学的过程 一、练习 二、总结 一、第5题 可以通过计算解决,也可以把三角形的底和高与*行四边形逐一进行比较。教学时,重点放在后一种方法的比较上。 二、第6题 要使学生画出的三角形的面积是9*方厘米,三角形底和高的乘积应是18。因此,方格纸上画出的三角形可以分别是:底6cm,高3cm;底3cm,高6cm;底9cm,高2cm;底2cm,高9cm;底1cm,高18cm。 三、第9题 测量红领巾高时,可以启发学生把红领巾对折后再测量。 四、第10题 要使学生认识到:涂色三角形与它所在的*行四边形等底等高,所以每个涂色三角形的面积都是它所在*行四边形面积的一半。 五、思考题 每个大三角形的面积是16*方厘米;中等三角形的面积是8*方厘米;每个小三角形的面积是4*方厘米;*行四边形和小正方形的面积是8*方厘米。 通过今天的练习我们对三角形面积计算方法的运用就更加熟练了,在以后的学习生活中我们还要多用它去解决一些实际问题,达到学以至用的目的。 做练习 教学内容:练习十九的第11~15题。 教学目的:通过练习,使学生进一步熟悉*行四边形、三角形、梯形面积的计算公式,提高计算面积的熟练程度。 教具准备:将复习题中的*行四边形、三角形、梯形画在小黑板上。用厚纸做一个*行四边形、两个完全一样的三角形和两个完全相同的梯形。 教学过程: 一、复习*行四边形、三角形、梯形面积的计算公式。 出示下列图形: 问:这3个图形分别是什么形?(*行四边形、三角形和梯形) *行四边形的面积怎样计算?公式是什么?(学生回答后,教师板书:S=ah) *行四边形的面积计算公式是怎样推导出来的?(教师出示一个*行四边形,让一学生说推导过程,教师边听边演示) 三角形的面积怎样计算的?公式是什么?(学生回答后,教师板书:S=ah÷2) 为什么要除以2?(学生回答,教师出示两个完全相同的三角形,演示用两个三角形拼摆一个*行四边形的过程) 梯形的面积是怎样计算的?公式是什么?(学生回答后,教师板书:S=(a+b)h÷2) 梯形的面积计算公式是怎样推导出来的?(学生回答,教师演示用两个完全相同的梯形拼摆一个*行四边形的过程。) 量出求这3个图形面积所需要的线段的长度。(让学生到黑板前量一量,并标在图上。让每个学生在自己的练习本上计算出这3个图形的面积,算完后,集体核对答案) 二、做练习十九中的题目。 1、第12题,先让学生说一说题中的图形各是什么形,再让学生独立计算。教师注意巡视,了解学生做的情况,核对时,进行有针对性的讲解。 2、第13题和第15题,让学生独立计算,做完后集体订正。 3、第18题,学生做完后,可以提问:在梯形中剪下一个最大的三角形,你是怎样剪的? 这个最大的三角形是唯一的吗?为什么?(不是唯一的,因为以梯形的下底为三角形的底,顶点在梯形的上底上的三角形有无数个,它们的面积是相等的。) 4、练习十九后面的思考题,学生自己试做。教师提示:这道题可以用梯形面积减去以4厘米为底,以12厘米为高的三角形的面积来计算;也可以用含有未知数X的等式来计算。 三、作业。 练习十九第11题和第14题。 课后小结: 教学内容:课本第77页的例题,练习十八的第5-12题 教学要求: 1、使学生比较熟练地应用三角形面积的计算公式计算三角形的面积。 2、能应用公式解答有关的实际应用问题。 3、养成良好的审题,检验的习惯,提高正确率。 教学重点:能比较熟练地应用公式计算三角形的面积,解答有关的实际应用问题。 教学过程: 一、复习 1、三角形的面积计算公式是什么?为什么公式中有一个“÷2”? 2、有关计算的错因分析: 下面的结答,问题出在哪里? 一个三角形,底是1.8米,高是1.2米,求它的面积。 解一:1.8×1.2=16(*方米) 解二:1.8×1.2÷2=2.16(*方米) 3、导入新课:掌握了计算公式,我们就可以着手解决许多有关的实际应用问题。(板书课题:三角形面积的计算) 二、新授 1、例题教学 (1)读题后,让学生尝试练习,并指定两名学生板演,再集体订正。 (2)注意“÷2”这一环节是否有人失误。 2、应用练习 完成课本第80页第8题的填表计算,把它化为4小题来处理,解答完成后填空。 教师简评:求图形的面积,首先应确定所求的是什么图形,其次考虑运用什么公式计算。 三、巩固练习 1、课本第80页的第7题。 先独立思考,再交流。 议一议:(1)这所有的以涂色三角形底边为底,顶点落在对面那条*行线上的两个三角形的面积与涂色三角形面积有什么关系?为什么存在这种关系? (2)再画出一个与之等面积的三角形,只要怎么取顶点就可以了? (3)你能联想到什么? 2、练习十八第5、6、9、10题(做在课作本上) ⑼一块三角形的玻璃,量得它的底是12.5分米,高是7.8分米。这块玻璃的面积是多少?如果每*方分米玻璃的价钱是0.9元,买这块玻璃要用多少钱? ⑽右图是人民医院包扎用的三角巾。现在有一块长18米,宽0.9米的白布, 可以做多少块三角巾? (1)学生独立作业,教师巡视,作个别辅导,并及时反馈。 (2)提取典型错例,进行评讲。 (3)第10题有下列各种解法,哪些是对的,哪些有毛病? 解一、14×0.9÷(0.9×0.9) 解二、14×0.9÷(0.9×0.9÷2) 解三、14×0.9÷(0.9×0.9)÷2 解四、14×0.9÷(0.9×0.9)×2 学生充分议后,教师简评:(作全课) 板书设计: 三角形面积的计算 教后感: 4、实际测量在地面上测量距离第课时总第课时 一.说 教 材 (一).教学内容 本课题选自九年义务教育六年制小学教材(人教课标版)数学第九册三角形的面积计算(教材第84页——85页的内容)。本册教材中三角形的计算是在学生已经学习了*行四边形的计算基础上安排的。所以,要想使学生理解掌握好三角形面积计算公式,必须以*行四边形的面积计算以及三角形的底和高相等的知识为基础,运用迁移和同化理论,使三角形面积的计算公式这一新知识纳入到学生原有知识体系中,三角形面积计算同时也是梯形面积公式的推导的前提和基础。在实际生活中,三角形面积计算有着广泛的作用,因此,学生必须学会这一内容。 (二).教学目标 1.知识目标: (1)掌握三角形面积计算公式的推导。 (2)能正确计算三角形的面积。 2.能力目标: (1)通过操作,培养学生的分析理解能力。 (2)培养学生应用知识解决实际问题的能力。 3.情感目标: 培养学生思维的灵活性,发展学生的空间观念 (三).教材重点、难点 三角形面积计算公式的推导过程和实际应用是本课内容的重点,也是难点。在利用公式实际计算过程中,学生最易出错的地方就是忘记“除以2”,以及三角形底和高对应的问题。 (四).教学准备 课前要求准备3组三角形(每套三角形是完全一样的),教师准备多媒体课件一份,演示教具一套。 二.说教法 1、教学理念 (1)把主动权交给学生。新课程强调形成学生积极主动的学习态度 ,不能单靠模仿、记忆。让学生经历观察、操作、推理、实践活动。 (2)改变学生学习方式,倡导动手操作、独立探究、合作交流的学习方式。使学生在合作中研究,在探索中创新,逐步学会学习并从中获得良好的情感体验,激发学生的责任感。 (3)加强知识与生活的联系。数学知识来源于生活,服务于生活。让学生感受数学在日常生活中的作用。 2.学情分析 针对学生的基础、能力、 学习态度、学习兴趣而提出不同的要求。 3.教 法 (1)实验法。根据学生心理发展的规律,学生通过自己动手操作学习新知识,比听教师讲解新知识记忆更加深刻,兴趣更加浓厚。因此,在教学三角形面积计算公式推导过程时,让学生动手操作,反复实验,讨论,再操作再实验,体现了以学生为主体,老师为主导的教学原则。 (2)多媒体辅助教学。在教学三角形面积计算公式推导过程时,采用多媒体课件动画演示推导过程,指导学生操作,帮助学生理解转化的数学方法在图形中运用。运用计算机多媒体教学,可以激发学生的学习兴趣。 (3) 教具演示配合讲解。学生经历了动手操作拼摆后,有些同学可能没有掌握操作过程,这时教师再用课件演示这一过程,配合讲解,使学生加强理解。 三、说 学 法 根据本课可操作性的特点,以及学生为主体,教师为主导的教学原则,在学法指导上应以学生动手操作为主,配以小组合作学习法,讨论法进行自主探究式学习。 四、说 教 学 过 程 (一)情景导入 1.创设情景:同学们,最近学校为了美化校园环境,打算把一块长方形草坪*均分成两块,一块用来种菊花,另一块用来种杜鹃花。你们有没有兴趣,帮助学校设计一个方案呢。请看大屏幕。 2.课件演示学生的设计: 3.谈话:大家的想法真不错,最终学校采用了第三种方案,可是,买花种的数量要按面积的大小来计算。你知道这一块花坛的面积是多少吗? 4.小结:每一块花坛的面积都是20*方米,仔细观察每一块花坛是什么形状呢?(直角三角形)刚才,我们借助了学过的长方形的面积算出了直角三角形的面积,如果花坛的形状是这样一个普通三角形,它的面积我们还能借助以前的知识计算吗? 5.导入:这节课我们就来研究三角形的面积。(板书课题) (二)、探究新知 1.课件出示各种形状的三角形。说一说你看到了什么? 2.过渡:老师已经把这些三角形放到你学具袋里,现在请你们小组合作:把学具拼一拼,摆一摆,你会发现什么?然后想一想三角形面积计算方法是怎样的? 3.学生小组操作活动。 4.小组汇报, 教师分三种情况板书:锐角三角形、钝角三角形、直角三角形 5.课件演示拼摆的过程 6、小结:总结三角形面积的计算公式。 如果用S表示三角形的面积,a表示三角形的底,h表示三角形的高,你会用字母来表示三角形的计算方式吗?(师板书S=ah÷2)。 教学内容:人教版9册 三角形面积公式推导部分 教学目的: 1、通过让学生主动探索三角形面积计算公式,经历三角形面积公式的探索过程,进一步感受转化的数学思想和方法。 2、使学生理解三角形面积计算公式,能正确地计算三角形的面积。 3、通过操作、观察、比较,培养学生问题意识、概括能力和推理能力,发展学生的空间观念。 教学过程: 一、阅读质疑。 先请同学们自己阅读以下材料,然后以小组为单位交流一下你们都学会了哪些知识,可以提出什么问题,并把问题随手记录下来。 1厘米 学生阅读后首先回顾了*行四边形、长方形地面积公式及推导过程。然后学生提出了质疑,主要问题有: (1)数方格怎么求三角形的面积? (2)不数方格怎么求三角形的面积?有没有一个通用公式? (3)能把三角形也转化成我们学过的图形求面积吗? (4)转化成的这些图形跟三角形有什么关系吗? (析:孔子曾说:“疑是思之始,学之端”。这里老师打破了学生等待老师提问的常规,要求学生把阅读材料作为学习主题,通过阅读提出问题,真正体现了“以生为本”。) 二、点拨激思 1。数方格的问题 学生根据学习材料可以解答用数方格的方法求三角形的面积。 老师接着问:有一个很大的三角形池塘,你来用数方格求它的面积。 学生小声笑了起来。为什么笑?老师问到。学生说数方格太麻烦了,池塘也不好划分方格。 嗯,看来数方格求面积是有一定局限性的, 今天我们就来研究三角形的面积。 (析:一石激起千层浪,学生由数方格方法的局限性这一认识的困惑与冲突,有效地引发了学生探究面积计算公式的生长点,使学生有了探究发现的空间。) 2。转化的问题 你想把三角形转化成什么图形?学生会转化成*行四边形、长方形、正方形。梯形行吗?这时学生会有两种答案,有的说行,有的说不行,为什么不行?老师追问,学生在讨论中达成共识:必须转化成学过的,可以计算面积的图形。 师:三角形怎样才能转化成这些图形?请同学们利用手中学具,通过拼一拼,折一折,剪一剪,利用转化成这些图形来解决下面的几个问题。 (析:这里把“新”问题转化成了“老”问题来解决,有效地把学法指导融入到了教学中,给学生创造了更广阔、更真实的自主空间,无疑有利于学生可持续性发展。) 三、探索解疑 学生操作,讨论,汇报。 1。转化的图形 学生的答案有很多种,把两个完全一样的三角形转化成了*行四边形、长方形和正方形,还有把一个三角形沿高剪下拼成了正方形、长方形,还有把一个三角形沿中位线对折,两边也折转化成了2层的长方形。 2。 解决转化前后图形间的关系 (1)大小的关系 通过比较学生们发现,两个完全一样的三角形拼成的图形跟三角形关系是S = S÷2。一个三角形转化成的图形跟三角形关系是S =S (2)底和高的关系 拼割前后各部分有什么关系?(指底和高)能推导出三角形的面积公式吗? 生1:两个完全一样的锐角三角形转化成了*行四边形,三角形的高就是*行四边形的高,三角形的底就是*行四边形的底。因为*行四边形的面积是底×高,它是由两个三角形拼成的,所以三角形的面积是底×高÷2 师:思路真清晰,为什么÷2,谁还想说。 (学生依次讲拼成的长方形,正方形这两种情况) (3)公式推导 师;同学们真了不起,想出了这么多好方法推出了三角形的面积公式,那谁能给大家说说三角形的面积等于什么? 生:底×高÷2 师:如果我用S表示三角形的面积,a表示三角形的底,h表示三角形的高,那三角形的面积公式该怎么表示呢? 生:S=a×h÷2 (4)推导拓展 师:我们再来看第二组,你能通过一个三角形的转化来推导它的面积公式吗? 学生1:我是把一个等腰三角形对折,然后从中间剪开拼成了一个长方形,这个长方形的底是三角形的底的一半,高是三角形的高,因为长方形的面积是长×宽,长方形的面积等于三角形的面积,所以三角形的面积是底×高÷2。 学生2:我是把一个直角三角形的上面对折下来,然后剪开,把它补在一边,拼成了一个长方形。这个长方形的长是三角形的底,高是三角形高的一半,所以也能推出三角形的面积是底×高÷2。 生3:我是把一个三角形沿着两边的重点对折,然后又把底边的重点这样对折,折成了一个长方形,这个长方形的底是三角形底的一半,宽是三角形高的一半,再乘以2,也可以推出三角形的面积是底×高÷2 师:这个方法怎样,谁来评价一下。学生评价,太棒了。 生4:我还有一种办法。把一个长方形沿对角线折叠,因为长方形的面积是长×宽,长方形是两个三角形拼成的,所以,三角形的面积是底×高÷2 (析:把探究的权利充分的交给学生,学生自由组合,利用已有的知识经验,通过折、移、拼、剪,得到了不同的图形,虽然是不同的角度、不同的手段、不同的方法,但达到了同一目的,得到了正确的三角形面积计算公式,更重要的是探究过程中学生的思维空间得到了拓展,思维个性得到了发挥。) <三>归纳小结 出示学习材料2,学生阅读后谈感想。体会祖国的古代科学家得了不起,20**多年前就推导出了这个公式。今天同学们通过自己的研究也推导出了三角形的面积计算公式,说明同学们也很聪明,相信将来你们还会有更多更大的发现,到那时你们的名字也将载如史册,大家有信心吗? 师:好,今天这节课我们研究了三角形的面积,你们学到了哪些知识,有什么收获?回去继续反思整理,写出你们的反思报告。 (析:课堂总结不仅要关注学生学会了什么,更要关注用什么方法学,学后有什么感想,要有意识的促进学生反思:我还有什么疑问?打算怎么办?,把课后反思纳入到学习的系统连续的过程中。) 总析:本节课有以下两个特点 1。 充分体现了“问题意识的培养”。 老师用了一种新的教学流程进行教学。即以“提出问题”,“研究问题”,“解决问题”为主线。当一个问题得到解决后,新的问题接着出现,学生始终处于“愤”和“悱”及对问题的探究中,有效地调动学生的学习的兴奋点,学生的问题意识得到发展。 2。重视研究问题的过程。 这节课以思维训练代替了重复练习,以发展学生的创造思维为重点,引导学生用多种方法进行转化,然后通过观察、操作、比较、归纳、抽象概括推导出公式,没有通过太多的练习却获得了超常规的解题能力。这个过程是学生自主探究的过程,这个过程是学生综合能力培养和提高的过程。 【教学内容】 九年义务教育六年制小学教科书(人教版)《数学》第九册。 【教材分析】 三角形面积是在学生掌握了三角形的特征以及长方形、正方形的面积计算的基础上进行学习的,其公式的推导方法与*行四边形面积的计算公式推导方法有相似之处。都是将图形转化成己经会计算面积的图形。探索研究新图形与己学图形之间的联系。从而找出面积的计算方法。因此。本节课注重对学生进行迁移、转化的数学思想方法的渗透。 【教学重点】: 三角形的面积计算公式的推导。 【教学难点】: 在转化中发现内在联系。 【学情分析】 由于学生对长方形、正方形、*行四边形的面积计算方法已掌握得较好。尤其通过对*行四边形面积公式的推导过程。学生己初步了解转化的数学思想方法。由此。对三角形面积的计算方法的探索得到了启示。但也可能有部分学生会遇到一定的困难,比如用什么方法把三角形转化成学过的图形。怎样转化、怎样推导出三角形面积的计算方法。 【教学目标】 (一)知识与技能目标1.掌握三角形面积计算公式。能正确计算三角形的面积。 2.能灵活运用公式解决简单的实际问题。 3.在探索学习过程中。培养学生动手实践自主学习的能力。 (二)过程与方法目标让学生经历利用数方格的方法,求出三角形面积的过程。并产生猜想。然后分组合作。经历探索三角形面积计算方法的过程。获得转化数学思想方法的初步经验。 (三)情感态度目标在探索学习活动中。培养学生探索意识、合作意识、创新意识。体会数学问题的探索性。并获得积极的、成功的情感体验。 【教学准备】 1.教师:投影仪、投影片3张。 2.学生:三角形面积计算公式操作材料1套、小剪刀1把。 【教学过程】 一、创设情境,引入新知 1.同学们。想知道老师今天给你们带来了什么吗?(投影出示下面三个图形) 这些图形的面积分别是多少(学生口答。人家判断)? 2.谁还记得*行四边形面积计算公式是怎样推导出来的吗(学生回答。并用老师准备的教具演示割拼的转化过程)? 在学生回答的基础上。板书:转化一~找关系一推导3.今天老师还给大家带来了一样礼物。想知道吗(出示红领巾)? 要想知道做这样的一条红领巾需用多少布。实际上是求这条红领巾的什么?(根据学生的回答)师问:三角形的面积怎样计算呢?这节课我们一起研究、探索这个问题(板书:三角形而积的计算)。 【设计意图:通过问题情境的创设。激发学生探索新知识的欲望。使学生明确探索的目标和方向。] 二、自主探索。合作交流 (一)用数方格的方法求三角形的面积(投影出示第69贞上面的要求和三个图形)看谁最快数出三角形的面积。 下面有3个三角形。图中每个方格代表1*方厘米。请你用数方格的方法。求出它们的面积各是多少*方厘米(不满一格的,都按半格计算)? 人家猜想一下。三角形的面积可能同它的什么有关系呢? 【设计意图】:通过数方格求三角形的面积。然后根据底和高的数据计算。鼓励学生大胆猜想出三角形的面积可能是底与高的乘积的一半。为下面实验、验证提出了探索的目标。 (二)谈话启思刚才。我们只是一种猜想。猜想是不是正确呢?我们必须通过探索实验来进行验证。能不能从*行四边形面积计算公式推导的方法中得到启示呢?现在利用你们每组中的学具。进行操作实验、合作研究。然后向全班同学展示你组的研究成果好吗? (三)操作探索—实验验证1.小组合作。探索实验(师参与到各组进行研究)。 2.小组汇报、交流展示。 (学生可能会展示出以下几种拼、剪、割补图形的情况。) 用完全一样的直角、锐角或钝角三角形拼成一个*行四边形 3.梳理结论。 以上同学们通过拼、剪、割补。不仅推导出三角形的面积计算公式。还运用多种方法进行了验证。请大家说一说三角形的面积计算公式。 板书:三角形的面积=底X高令2如果用S表示面积。a, h分别表示底和高。用字母怎样表示其面积计算公式? 板书:S=ah=2【设计意图:首先为学生提供了可探索的学习材料。各组自由选择。体现探索的开放性。通过各小组的研讨。合作找出拼剪、割补等转化图形的方法。然后得出结论。目的是通过公式的推导。使学生都能亲身经历探索的过程、发现的过程、推理的过程、个人独立思考的过程、小组合作研究的过程、交流学习的过程。达到对公式的来源、推理的深刻理解。最后结论:梳理出三角形面积计算的公式及字母公式。体现“以学生为本”这一理念。】 三、实践运用,拓展创新 利用公式验证方格图中三角形的面积。 拿出红领巾四人一组计算做一条红领巾大约用多少布? 尝试解答例题。 (投影出示)一种零件有一面是三角形。三角形的底是5厘米。高是4厘米。这个三角形的面积是多少*方厘米(学生独立解答,教师巡视点拨)? 4.挑战自己。 ①下图中哪个三角形的面积与涂颜色的三角形的面积相等? 为什么? ②你能再画一个与涂颜色的三角形面积相等的三角形吗?你认为可以画多少个这样的三角形? 【设计意图】:放手让学生尝试实践。使学生在尝试成功中获取积极的情感体验。计算红领巾要用多大的布,目的是培养学生的自主实践能力。密切数学与现实生活的联系。判断图中三角形的面积是否相等。主要是训练学生灵活运用知识并将所学知识加以拓展的能力。 四、评价体验,总结延伸 1.通过这节课学习。你有什么收获? 2.做一条红领巾用多大的布你们知道了,如果田间有一块三角形的麦田。你能测录计算它的面积吗?谈谈你的方法。 3.课后实践:同学合作。测录一个任意三角形的实物,计算出三角形的而积。 【设计意图】:让学生说最想说的话和最想提的问题是什么,是对学生进一步探索的鼓励。设计三角形的面积计算由小到大延仲,课内测量到课外延仲。目的是让学生带着所学的知识走向生活,走向社会。走向自然。解决生活中简单的实际问题。 【教学反思】 本节课以“猜想一验证一结论一实践”的教学模式进行教学设计。力求体现“以学生发展为本”这一教育的共同理念。在获取知识时大胆放手。让学生主动地进行观察、实验、猜想、验证、交流等数学活动,目的是培养学生的创新意识和实践能力,使学生体会到自己就是学习活动中的探究者、发现者。 通过本节课的教学。有以下几点体会: 1.提供有利于探索的学习素材。本课设计探求三角形面积的计算,对于学生己有的认知结构来说是适当的。实践证明。学生能够在原有的知识基础上。利用学习材料去探究和发现三角形面积的计算方法。 2.重视小组合作学习。本课以小组学习的形式。使学生经历了合作、交流、探索的过程。感受到合作探究解决问题的乐趣和与他人合作的良好情感体验。 3.在评价时,要坚持“不求人人成功。只求人人进步”的思想。把评价的重心放在合作上。把学习的着力点定位在争取不断的进步与提高上。只要有所进步。就能体验到成功。 一、复习旧知 1、说说长方形、正方形、*行四边形的面积计算公式? 2、计算下面长方形和*行四边形面积。 二、小组合作、探究三角形面积的计算 1、用自制三角形拼成我们学过的图形。(小组代表在展台上展示) 我们发现:两个完全一样的三角形可以拼成()、()、()图形。 思考:每个三角形面积是拼成后的图形面积的()。 三角形的底和高与拼成后图形有什么关系? 结论:两个完全一样的三角形可以拼成一个与它()的*形四边形。 2、根据实验证明: 两个完全一样的三角形可以拼成一个*行四边形。 这个*行四边形的底等于三角形的() 这个*行四边形的高等于三角形的() 每个三角形的面积是拼成的和它()的*行四边形面积的()。 因为*行四边形的面积=______________ 所以三角形的面积=_______________用字母表示____________ 从公式中发现要求三角形的面积必须需要知道哪些条件? 三、量出红领巾的底和高算出它的面积。 【教学内容】教材第134页复习第12~15题。 【教学目标】 【教学重点 掌握求*行四边形、三角形和梯形的面积计算公式,会进行面积单难点】位的换算。 【教学过程】 一、揭示课题 我们今天复习*行四边形、三角形和梯形面积的计算以及土地面积的有关知识。通过复习使学生进一步理解和掌握求*行四边形、三角形和梯形的面积计算,会进行土地面积计算和面积单位间的换算。 二、复习面积单位 1、(1)我们学过哪些面积单位?并按一定州顺序排列。 (2)每相邻两个面积单位间的进率各是多少? 2、练习做期末复习第12题。 学生做,并说计算过程。 三、复习*行四边形、三角形和梯形的面积计算及其联系 1、说一说这三种图形面积计算公式是什么?并说一说每个图形的面积是怎样推导出来的? 2、我们在学习*行四边形、三角形和梯形面积的计算时,都是把它们变成已学过的图形,这种学习方法叫做什么?(转化),以后学习其他图形的面积时,还是要用到这种方法。 3、把长方形、正方形、*行四边形、三角形和梯形之间的联系 用图表示出来。 (1) 学生画图: (2)从图上可以看出,谁的面积是基础? 4、(1)练习做期末复习第14题。 学生计算后反馈。 (2)填空: ①一个三角形和一个*行四边形等底等高,如果三角形的面积是60*方米,那么*行四边形面积是( )*方米;如果*行四边形面积是60*方米,那么三角形的面积是( )*方米。 ②一个三角形底不变,高扩大3倍,面积( )倍。 ③一个*行四边形底扩大16倍,高缩小2倍,面积就( )倍。 (3)应用题练习,期末复习第15题。 注意第(2)题单位不统一,先统一单位后再解答。 四、复习土地面积单位 1、(1)计算土地面积常用的单位有哪些? (2)1*方千米,1公顷各有多大? (3)测量土地时,一般用什么作长度单位?算出面积是多少*方米后,再换算成公顷或*方千米。 2、应用题: (1)一个*行四边形果园,占地3公顷,它的底是400米,高是多少米? 学生做完后,师问:这题要注意什么? (2)一个梯形的小麦田,上底长200米,下底长400米,高600米,它的面积是多少公顷?如果每公顷收小麦6000千克,这块小麦田能收小麦多少吨? 反馈时,说明最后结果单位要统一成吨。 3、综合练习:做期末复习第13题。 在书上做并说明理由。 五、全课总结 这节课复习了什么内容?我们复习了面积计算。进一步知道通过图形的转化,可以推导出*等四边形、三角形和梯形的面积计算公式,并且按它们面积计算公式可以分别计算出这些图形的面积是多少。 【作业设计】 补充 1、判断: (1)两个完全一样的直角三角形能拼成*行四边形。( ) (2)两个面积相等的三角形一定等底等高。 ( ) (3)62=62=12。 ( ) (4)40公顷4*方千米。( ) 2、一块*行四边形棉田,底400米,是高的2倍,共收籽棉8000千克,*均每公顷收籽棉多少克? 3、体育组跳箱的一面是梯形,它的上底是8分米,下底是1米,高11分米。求这个梯形的面积是多少*方分米? 教学内容: 教材第9—10页例4、例5及“练一练”、“试一试”、“练习二”第6-9题。 教学目标: 1.通过操作、观察、填表、讨论、归纳等数学活动,探索并掌握三角形的面积公式,能正确地计算三角形的面积,并应用公式解决简单的实际问题。 2.进一步体会转化方法的价值,培养自己应用已有知识解决新问题的能力,发展自己的空间观念和初步的推理能力。 教学重点: 经历探究三角形面积计算公式的过程,理解并掌握三角形的面积计算公式。 教学难点: 理解三角形面积公式的推导过程。 教学准备: 多媒体课件、教材第115页的三角形。 探究方案: 一、自主准备 1.说一说:下面每个小方格表示1*方厘米,你知道涂色三角形的面积各是多少*方厘米吗?你是怎么想的? ()()() 2.思考: (1)三角形的面积与它拼成的*行四边形的面积有什么关系? (2)有没有直接计算三角形面积的方法呢? (3)假如要你探究三角形的面积,你打算把它转化成什么图形进行研究?我想转化成 二、自主探究 1.拼一拼:从课本第115页上选两个完全一样的三角形剪下来,看看能不能拼成*行四边形。 2.填一填:你剪下的两个完全一样的三角形能拼成*行四边形吗?如果能,拼成的*行四边形的面积和每个三角形的面积各是多少?请填写下表。 3.想一想 (1)拼成*行四边形的两个三角形有什么关系? (2)拼成的*行四边形的底和高与原三角形的底和高有什么关系?每个三角形的面积与拼成的*行四边形的面积呢? (3)根据*行四边形的面积公式,怎样求三角形的面积? 三、自主应用 试一试:完成书上第10页的“试一试”。 四、自主质疑 说一说: (1)三角形的面积公式是怎么推导的?你还有什么疑问? (2)你认为本节课应学会什么? 教学过程: 一、明确目标 提问:同学们,通过自主学习,你知道今天的学习内容吗?(揭示课题)你认为本节课应学会什么? 二、交流提升 1.出示例4的方格图及其中的*行四边形。 (1)全班交流:每个涂色的三角形的面积各是多少*方厘米? (2)小组交流:你是怎么得出每个三角形的面积的?说说你的想法。 (3)全班交流:有人用数方格的方法得出三角形面积,也有同学先求出*行四边形的面积,再除以2得出三角形的面积。 三角形的面积和*行四边形的面积会有什么联系呢? 2.交流三角形面积公式的探究情况。 (1)出示例5:展台出示各组的表格填写情况,各组派代表上台展示拼的过程。 小组讨论:你剪下的两个完全一样的三角形的底和高各是多少?面积是多少?拼成的*行四边形的底和高各是多少?面积是多少? (2)全班交流:你有什么发现?(即例5下面的问题) (3)梳理、明确 两个完全一样的三角形,无论是直角、锐角,还是钝角三角形,都可以拼成一个*行四边形。 这个*行四边形的底等于三角形的底,这个*行四边形的高等于三角形的高。因为每个三角形的面积等于拼成的*行四边形面积的一半,所以三角形的面积=底×高÷2,用字母表示三角形面积公式:S = a h÷2 3.交流“试一试” (1)全班交流:你是怎么想的?计算三角形的面积为什么要除以2? (2)学生订正。 三、巩固提升 1.完成“练一练”的1、2两题。 学生先独立完成,再讨论交流:两个完全一样的三角形拼成一个*行四边形,三角形的面积和*行四边形的面积有什么关系?(让学生弄清谁是谁的2倍,谁是谁的一半。) 2.练习二第6题。 学生独立完成,组织校对。 3.练习二第7题。 (1)多媒体出示第7题的方格图及*行四边形和三角形。 (2)独立思考:你认为图中哪几个三角形的面积是*行四边形面积的一半?为什么? (3)小组交流:分别是怎么想的。 (4)全班交流、总结 可以通过计算,判断三角形的面积是不是*行四边形面积的一半,也可以把三角形的底和高与*行四边形逐一比较,很快作出判断。 4.练习二第8、9题。 (1)学生独立完成,再交流想法。 (2)学生订正。 四、总结延伸 本节课你有什么收获?还有什么疑问? 板书设计: 三角形的面积计算 两个完全一样的三角形都可以拼成一个*行四边形。 *行四边形的面积=底×高 2倍一半 三角形的面积=底×高÷ 2 《三角形面积计算》这节课的内容是在*行四边形面积计算的基础上进行教学的,主要是引导学生通过三角形面积公式的"推导去理解和掌握三角形面积计算公式,并能运用三角形的面积公式,计算相关图形的面积,解决实际问题。根据新课程新理念的要求,教学应该由原来教师单纯的教转变为引导学生学会学习。因此,在教学中我注重引导学生自己动手操作。从操作中掌握方法,发现问题,解决问题。 一、动手操作,拼一拼,摆一摆 ,创造性的使用教材 在教学中,我让学生动手操作,分别将三组两个完全一样的三角形拼成一个*行四边形,并比较每个三角形与拼成的*行四边形各部分间的关系,同时在操作中向学生渗透旋转、*移的方法,让学生体验和感知三角形面积公式的推导过程。在这个过程中,学生们表现出了浓厚的兴趣,个个都很积极、很投入地动手操作,极大调动了学生思维活动。学生真正成为了学习的主体。但是在这个环节上,学生的推导方法太单一,都是将两个完全相同的三角形拼在一起,我是在想老师应不应该点拨其他方法,老师点拨就会导致讲的太多,不讲呢有的学生不好理解。还有就是课堂上学生活动的时间不够多,这是本课中的缺憾。 二、引导学生发现问题、思考问题,培养合作精神 在这节课中,并没有直接探讨*行四边形面积公式与三角形面积公式有何不同,三角形面积公式中的“除以2”是怎么来的两个问题。所以在后面练习的时候有的学生和问出为什么“除以2”。如果再上这节课我会引导学生探讨这个问题,在探讨这个问题时,可采用小组讨论的方式,在讨论中发现问题,解决问题。小组讨论既可培养学生的合作精神,又可活跃课堂气氛。这节课总这个地方处理的不好。 三、应用公式解决生活中的问题 新课程非常重视学生在活动中的体验,强调学生身临其境的体验。让学生运用所学三角形面积公式解决实际问题。补充了一些生活中的实例,使学生尝到应用知识的快乐,把课堂气氛推向高潮。 总的来说这节课放手让学生自行探究三角形的面积公式这一点,我做得非常大胆,体现了新课程中关于让学生自主学习的理念。但我发现在某些方面仍存在“牵着学生鼻子走”,如学生合作和思考的时间不足,教师讲的过多,提示(暗示)得过多;学生练习时间不够,形式比较少等。在实际教学中,发现学生在推导过程中遇到困难——两个完全一样的钝角三角形和两个完全一样的锐角三角形如何剪拼成学过的长方形,开始相当部分学生无从下手,推导受阻,浪费了一定的时间,使整节课的教学效果受到一定的影响。如何处理好这个环节,是一个非常值得探讨的问题。 在后面的学习中,我还要重点解决“等底等高的三角形与*行四边形面积”之间的关系这个问题。 教学内容 六年制人教版第九册75~77页。 教学目标 1、使学生理解三角形面积公式的推导过程,并能正确的计算三角形的面积。 2、培养学生分析、推理的能力和实际操作的能力。 3、通过三角形面积计算公式的推导,引导学生运用转化的思考方法探索规律。 4、通过小组合作,交流,培养学生爱学数学,乐学数学的情感。 教具、学具准备:每个学生准备两个完全一样的锐角三角形、直角三角形、钝角三角形。多媒体课件。 教学过程 复习导入 1、出示一个底是4分米,高是3分米的*行四边形。这是一个什么图形?它的面积如何计算?是多少? (板书*行四边形的面积计算公式) 2、老师用一条线段把这个*行四边形的对角连接起来,这个*行四边形被分成了两个什么图形?(三角形)我们已经学过了几种三角形?同学们能不能猜一猜其中一个三角形的面积是多少? 3、通过重合验证其中一个三角形的面积是6*方分米。 4、出示三个三角形,同学们能不能猜一猜这三个三角形的面积各是多少?(如下图) 覆盖方格图,现在同学们能够知道这三个三角形的面积了吗? 我们称这种计算面积的方法是什么方法?(学生分组数方格计算三角形的面积。观察三种三角形的底、高和面积。初步感知三角形等底等高,面积相等。) 4、“如果我们河头镇的地形是一个三角形,也用数方格的方法来计算他的面积,方便吗?象这种数方格的方法既麻烦又不准确,那我们能否像研究*行四边形的面积计算公式那样,把三角形转化为我们已经学过的图形呢? 5、今天这节课我们就一起来研究三角形面积的计算。”(出示课题) 【评:数学活动必须建立在学生认知发展水*和已有知识经验基础之上。本课复习导入设计精妙,利用本课的重点,删繁就简,既为新课的学习作了铺垫,又调动了学生积极探索新知的积极性。利用一环紧扣一环的情境设计,使学生体验到一种“山重水复疑无路,柳暗花明又一村” 的感受,感受到来自知识的挑战,激起学生主动学习的欲望。】 二、新课 1、通过操作总结三角形面积的计算公式。 (1) 学生独立尝试。 四人一小组,学生利用手中的学具进行操作。 (2) 交流尝试结果。 我们来看一看同学们都拼成了哪些图形? 让操作好的学生上台展示自己拼成的图形,并贴在黑板上展示。 【评:让学生在操作、感受、体验的过程中,实现数学的“再发现”,只有让学生在具体情境中去感受、体验,才能使学生有真情实感,才能真正理解数学,继而实现数学的“再创造”。】 (3)引导探索规律。 1、“我们一起来看一看,我们用两个完全一样的三角形已经拼成了几种图形? “长方形是特殊的*行四边形,因此,今天我们着重研究三角形和拼成的*行四边形之间的关系。我们来观察一下三角形和拼成的*行四边形的情况(三种情况),“这边的*行四边形是由哪两个完全一样的三角形拼成的?每一个三角形和拼成的*行四边形面积之间究竟有什么样的关系呢?” 2、学生小组讨论得出只要用两个完全一样的三角形都可以拼成一个*行四边形,三角形的底就是*行四边形的底,三角形的高就是*行四边形的高,每个三角形的面积是拼成的*行四边形的面积的一半。 3、归纳总结规律。 学生根据讨论结果总结三角形面积计算公式。(板书) 三角形面积=底×高÷2 S=ah÷2 4、思想教育 教学内容 p27~28 教学目标 1、使学生理解并掌握三角形面积的计算公式。能正确地计算三角形的面积。 2、通过操作,培养学生的分析推理能力。培养学生应用所学知识解决实际问题的能力,发展学生的空间概念。 3、引导学生运用转化的方法探索规律。 教学重点: 理解并掌握三角形面积的计算公式。 教学难点: 理解三角形面积计算公式的推导过程。 教学准备: 投影和自制三角形面积演示纸板等 教学过程: 一、创设情境,引入课题 右图是一张三角形彩纸,它的面积是多少? 提问:这块彩纸是什么形状?你会算出它的面积吗? 引入:怎样把三角形转化成我们已学过的图形,然后算出它的面积呢?我们这节课就来探讨这个问题。 二、探索新知 1.推导三角形面积计算公式。 (1)操作感知:让学生用学具并用自己喜欢的办法探索怎样把三角形转化成*行四边形。 (2)汇报、交流,总结两种转化方法。 重点讨论: ①拼成的*行四边形与原来的三角形有什么关系? ②怎样计算三角形的面积? 形成共识: ①两个完全一样的三角形都可以拼成一个*行四边形,这个*行四边形的底等于三角形的底,这个*行四边形的高等于三角形的高。②因为三角形的面积=拼成的*行四边形面积÷2 强化理解推导过程:三角形面积的计算公式是怎样推导出来的?为什么要加上“除以2”? 板书:三角形面积=底×高÷2 (3)用字母公式表示。 如果用s表示三角形面积,a和h分别表示三角形的底和高,三角形的面积公式也可以用字母表示为:s=ah÷2。(板书) 2.即时练习:让学生完成课前引入中的求彩纸面积的问题,并组织交流。 4×3÷2=12÷2=6(c㎡) 通过交流引导学生进一步认识三角形面积和*行四边形面积计算方法的异同点。 三、巩固练习 指导学生完成p28“试一试”。 四、总结全课 让学生谈谈这节课的收获和体会:怎样求三角形的面积?三角形面积的计算公式是怎样推导的? 五、作业 1.课内作业:p28“练一练”第一题。 2.课外作业:优化作业相关练习。 教学目标: 1、经历三角形面积计算公式的探索过程,理解三角形的面积计算公式。 2、通过操作和对图形的观察、比较,发展学生的空间观念。使学生知道转化的思考方法在研究三角形的面积时的运用,培养学生的分析、综合、抽象、概括和运用转化方法解决实际问题的能力。 3、培养学生的创新意识和合作精神。 教学重点: 理解三角形面积计算公式,正确计算三角形的面积. 教学难点: 在转化中发现内在联系及推导说理。 学具准备: 每个学生准备三种类型三角形(每种类型准备2个完全一样的)和一个*行四边形。红领巾等。 教学过程 复习导入: 1、复习:想一想,*行四边形的面积怎样计算?这个公式是怎么推导出来的? 指名说一说,师可再现推导过程。 2、导入:出示红领巾,它是什么图形?它的面积该怎么计算?揭示课题。 二、探究三角形的面积公式. 1.启发提问:你能否依照*行四边形面积的方法把三角形转化成已学过的图形,再计算面积呢? 2.用两个完全一样的直角三角形拼. (1)教师参与学生拼摆,个别加以指导 (2)演示课件:拼摆图形 (3)讨论 ①两个完全一样的直角三角形拼成一个大三角形能帮助我们推导出三角形面积公式吗?为什么? ②观察拼成的长方形和*行四边形,每个直角三角形的面积与拼成的*行 四边形的面积有什么关系? 3.用两个完全一样的锐角三角形拼. (1)组织学生利用手里的学具试拼.(指名演示) (2)演示课件:拼摆图形(突出旋转、*移) 教师提问:每个三角形的面积与拼成的*行四边形的面积有什么关系? 4.用两个完全一样的钝角三角形来拼. (1)由学生独立完成. (2)演示课件:拼摆图形 5.讨论: (1)两个完全相同的三角形都可以转化成什么图形? (2)每个三角形的面积与拼成的*行四边形的面积有什么关系? (3)三角形面积的计算公式是什么? 6、引导学生明确: ①两个完全一样的三角形都可以拼成一个*行四边形。 ②每个三角形的面积等于拼成的*行四边形面积的一半。(同时板书) ③这个*行四边形的底等于三角形的底。(同时板书) ④这个*行四边形的高等于三角形的高。(同时板书) (3)三角形面积的计算公式是怎样推导出来的?为什么要加上“除以2”?(强化理解推导过程) 板书:三角形面积=底×高÷2 教学目标 1、理解三角形面积公式的推导过程,正确运用三角形面积计算公式进行计算。 2、培养学生观察能力、动手操作能力和类推迁移的能力。 3、培养学生勤于思考,积极探索的学习精神。 教学建议 教材分析 本小节内容是三角形面积的计算。是在学生已经掌握了三角形的特征和*行四边形面积计算的基础上,运用转化思想和方法来学习的。牢固掌握这种解决问题的思想和方法,是将来学习数学的一条捷径。 本小节教材分为三个部分。第一部分是用数方格的方法求出三角形面积。通过数三个不同类型三角形的面积,使学生真正体会到这种方法太麻烦,不易数对,盟生一种探求更好、更简捷的计算公式,进一步调动学生继续探索的积极性。第二部分是用转化的方法推导出三角形面积的计算公式。用两个完全一样的直角三角形,锐角三角形和钝角三角形通过*移、旋转分别拼摆成*行四边形,通过发现每个三角形与拼成的*行四边形(或长、正方形)的面积关系,从而渗透“三角形面积=底×高÷2”的计算公式。第三部分是应用三角形面积公式计算。 本节课的教学重点是理解掌握三角形面积的计算公式及面积计算公式的应用。难点是三角形面积公式的推导过程。 教法建议 教师要先复习三角形的特征,能画出并指出各种不同类型三角形的底和高,再复习*行四边形面积公式的推导过程,为解决三角形面积公式做铺垫。 在推导三角形面积计算公式之前,先用数方格求面积的方法,然后引导学生联想*行四边形面积公式的推导过程,启发提问:能不能也把今天学习的三角形转化成我们学过的其它图形?首先利用书后材料剪下不同类型的三角形,按照书中安排的层次,先研究把两个直角三角形转化成学过的不同图形,重点解决为什么不把它们转化成三角形的道理。这样在研“两个锐角三角形”时,就不会转化成没学过面积公式的图形,第二层中要注意解决旋转的问题,为了便于理解,可借助课件,形象地展现在学生面前。第三层次则由学生自主探索完成,通过以上(三种不同情况)转化前后的对比,得出三角形的面积计算公式。并重点提问为什么要除以2?由于已有*行四边形面积计算公式的基础,关于三角形面积公式和字母公式就可由学生自己解决了。 本节课要注重发挥学生的主体地位,注意培养学生的动手能力,在操作中学会新知。 推荐访问:角形
小班
教案
小班主题三角形教案3篇
小班主题三角形教案1
小班三角形的教案
三角形边的关系教案7
三角形边的关系教案8
三角形边的关系教案9
三角形边的关系教案10
小班主题三角形教案3篇(扩展6)
全等三角形教案1
全等三角形教案2
全等三角形教案3
小班主题三角形教案3篇(扩展7)
《三角形的面积计算》教案1
《三角形的面积计算》教案2
《三角形的面积计算》教案3
《三角形的面积计算》教案4
《三角形的面积计算》教案5
《三角形的面积计算》教案6
《三角形的面积计算》教案7
《三角形的面积计算》教案8
《三角形的面积计算》教案9
《三角形的面积计算》教案10
《三角形的面积计算》教案11
《三角形的面积计算》教案12
《三角形的面积计算》教案13
《三角形的面积计算》教案14
《三角形的面积计算》教案15